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Super-Resolution Hyperspectral Reconstruction with
Majorization-Minimization Algorithm and

Low-Rank Approximation
Ralph Abi-Rizk, François Orieux and Alain Abergel

Abstract—Hyperspectral imaging (HSI) has become an in-
valuable imaging tool for many applications in astrophysics or
Earth observation. Unfortunately, direct observation of hyper-
spectral images is impossible since the actual measurements are
2D and suffer from strong spatial and spectral degradations,
especially in the infrared. We present in this work an original
method for high-resolution hyperspectral image reconstruction
from heterogeneous 2D measurements degraded by integral field
spectroscopy (IFS) instrument. A fundamental part of this work
is developing a forward model that accounts for the limitations
of the IFS instrument, such as wavelength-dependent spatial and
spectral blur, subsampling, and inhomogeneous sampling steps.
The reconstruction method inverts the forward model using a
deterministic regularization framework for edge-preserving. It
fuses information from different observations and spectral bands
for resolution enhancements. We rely on the Majorize-Minimize
memory gradient (3MG) optimization algorithm to solve the
inverse problem while considering a low-rank approximation for
the unknown to handle the high-dimensionality of the problem.

Index Terms—Inverse Problems – Super Resolution – Hyper-
spectral Imaging – Deconvolution – Spectral unmixing

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) simultaneously col-
lects high-resolution spectra at different spatial loca-

tions. It is wildly used for remote sensing applications in
numerous domains such as in astrophysics [1], fluorescence
microscopy [2], military [3], medical diagnosis [4], and others.
HSI products are 3-dimensional (3D) images (i, j, l) where
(i, j) are the two spatial dimensions and l the spectral dimen-
sion. Unfortunately, direct observations of hyperspectral (HS)
images are not straightforward because 3D detectors do not
exist. Instead, HS instruments, primarily relying on dispersive
spectrometers, are designed to acquire measurements projected
onto 2D detectors. In particular, HS instruments based on
Integral Field Spectroscopy (IFS) [5] simultaneously observe
the field of view (FOV) of the 3D input image through
several thin slits in parallel. The dispersed wavelength from
each slit is projected onto 2D detectors, spanning a spatial
dimension along one axis and a spectral dimension along the
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other axis. Consequently, a reconstruction stage is required
to estimate the 3D input image from the collected 2D mea-
surements. Although having a high spectral resolution, the
2D measurements suffer from spatial and spectral limitations
during the acquisition process, such as blurring, sampling,
and noise. First, because of the diffraction [6], the optical
response known as the Point Spread function (PSF) introduces
a wavelength-dependent spatial blurring. Second, the response
of the dispersing system introduces a spectral blurring, which
is also wavelength-dependent [7]. Finally, the spatial sampling
on the detector is often insufficient at all wavelengths. To
enhance the spatial resolution lost at the detector, a “dithering”
method is considered [8], [9], consisting of observing the
same scene multiple times by slightly shifting the measuring
instrument. The resulted multi-frame measurements lead to a
Super Resolution (SR) problem [10].

Several multi-frame SR algorithms have been addressed
to reconstruct a discrete 3D input image from a set of
measurements degraded by the HS instrument. The state-of-
art approach for multi-frame SR 3D reconstruction is based
on the shift and addition (S&A) method [8], [11]. It merges
the overall sampled and aliased measurements to provide
a single reconstructed 3D image with an enhanced spatial
resolution. Even though the S&A provides fast and non-
iterative algorithms, it does not consider spatial and spectral
blurring. Hence, it can be followed by a deblurring step,
such as a Total Variation (TV) regularization [12], [13]. This
technique is efficient for monochromatic image reconstruction.
However, for HS image reconstruction, the deblurring step
treats the spatial and spectral dimensions separately without
considering the correlations between spectral bands.

Multi-frame SR reconstruction algorithms for HS images
have also been treated as an inverse problem allowing a joint
process of the spatial and spectral information from all the
measurements. Such approaches rely on an explicit forward
model that considers the limitations of the HS instrument and
some additional priors about the 3D input image [14], [15].
Other tensor-based methods for HS reconstruction have been
proposed in [16] for SR, deblurring and denoising. Most of
these approaches assume a low-rank structure, where the input
is represented with a small number of spectral components.

[14] developed a forward model that simulates optically
blurred, sampled, and aliased HS multi-frame measurements.
They proposed a SR reconstruction algorithm based on the
projection onto convex sets (POCS) method [17] that relies
on the forward model to restore the observed HS image,
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approximated in the low-dimensional subspace. [15] handled
the multi-frame SR reconstruction in the principal component
analysis (PCA) domain. They used the first few principal
components [18] to estimate motion and to reconstruct the
3D input image via the maximum a posteriori (MAP) [19].
However, the spatial blurring considered in these works is
stationary, and the spatial and spectral fields of view are
homogeneous.

Another solution for the spatial resolution enhancement is to
perform a fusion of spatially sampled HS measurements with
an auxiliary image of the same scene with high spatial reso-
lution, if available, such as panchromatic (PAN) [20], or mul-
tispectral (MS) [1]. In particular, the HS-MS fusion has been
excessively addressed in the inverse problem framework [1],
[21], [22]. It relies on minimizing an objective function asso-
ciated with two data fitting terms for HS and MS, respectively,
and some priors about the 3D input image. [1] proposed
an HS-MS fusion method while accounting for wavelength-
dependent spatial blur. They provide fast algorithms in the
Fourier domain while assuming a low-rank structure of the
astronomical input image. However, the works proposed in [1],
[14], [15] consider 3D measurements with uniform spatial
and spectral sampling steps and without accounting for a
wavelength-dependent spectral PSF.

We present in this work a complex forward model based on
an IFS instrument dedicated to astronomical observations in
the infrared spectral range. The input is a 3D spatio-spectral
image with a high resolution, approximated in a low-rank sub-
space, and simulates a set of multi-frame measurements pro-
jected onto different 2D detectors of different characteristics.
The proposed model allows different input observations from
different IFS instruments and pointing. Moreover, it considers
wavelength-dependent spatial and spectral blurring, as well as
heterogeneous spatial and spectral sampling on the detectors.
We then propose a reconstruction method that uses the forward
model and relies on the regularized least square approaches
with convex edge-preserving regularization [23]. To solve the
inversion problem, we choose the iterative Majorize-Minimize
Memory Gradient (3MG) optimization algorithm [24] tested
on two synthetic 3D input images with different spatial and
spectral distributions. The results show significant improve-
ment of the spatial and spectral resolutions compared to the
shift-and-add (S&A) algorithm [8], [11] followed by a spatial
Total-Variation (TV) regularization for each wavelength [12],
and the classic l2 regularization [25].

The paper is organized as follows. The section II discusses
the proposed methodology, first for the instrument model
developed for the IFS instrument (Section II-A), and second
for the forward model based on the linear mixing model
(LMM) [26] (Section II-B). The SR multi-frame reconstruction
algorithm is presented in Section III. In Section IV, we present
the reconstruction results with the proposed algorithm and
provide a comparison with other reconstruction algorithms.
Finally, we provide a conclusion in Section V.

II. FORWARD MODEL FOR HETEROGENOUS
HYPERSPECTRAL DATA FUSION

A. Observation Model

This section presents a new observation model of IFS
instruments used for spectral data fusion. It considers a series
of components that modify and degrade the observed 3D input
image (HS image), resulting in a set of blurred, truncated, and
aliased 2D multi-frame measurements.

The original discretized input image is denoted x[i, j, l],
with two spatial dimensions (i, j) ∈ [1, . . . , I] × [1, . . . , J ]
denoting the pixel index, and one spectral dimension l ∈
[1, . . . , L]. It is supposed uniformly sampled with spatial steps
(Ti, Tj), and spectral step Tl.

1) Spatial Filtering: Because of the diffraction phe-
nomenon [6], the observed 3D input is spatially blurred by
the response of the optical system, also known as the point
spread function (PSF). The PSF, denoted h, is spectrally non-
invariant, with an increasing blur as the wavelength increases.
We suppose that the monochromatic PSF is known from
simulations [27], calibration, or previous data processing steps.
The PSF is also assumed to be spatially stationary at all
wavelengths. Thus, the spatial filtering is carried out by a 2D
spatial convolution between the 3D input image and a discrete
wavelength-dependent PSF, sampled with the same sampling
step of the input, (Ti, Tj), writing

xopt = x[i, j, l] ∗
i,j

h[i, j, l]. (1)

We will see in the next section that the model includes
spatially truncated observation since the field of view of the
IFS instrument is smaller than that of the 3D input image.
Consequently, the spatial convolution is calculated using the
discrete spatial Fourier transform for fast computation [28]
without introducing periodic patterns to the blurred image.

2) Spatio-Spectral Field of View: We consider here a
spectral data fusion problem where xopt is observed with
various spatial and spectral fields of view grouped in distinct
spectral channels c ∈ [1, . . . , C]. Each channel can possess
a different FOV, spectral range, and sampling step size. In
addition, the IFS instrument observes the FOV of each channel
simultaneously through several slits in parallel. The number
and size of the slits depend on the channel c. The spectral
selection into channels and the spatial selection into slits result
from a multiplication between xopt and the channel windows
wc that writes

wc[i, j, l] ̸= 0, ∀(i, j, l) ∈ (Ic,Jc,Lc), (2)

with (Ic,Jc,Lc) a rectangular subset of [1, . . . , I] ×
[1, . . . , J ] × [1, . . . , L], and 0 otherwise. This hypothesis
implies that all window sizes (∆i,c,∆j,c) are multiples of
the step sizes of the 3D input image x: (∆i,c,∆j,c) =
(ncTi,mcTj), with (nc,mc) ∈ N2. This is an approximation,
minored if the step sizes are small.

In addition, the instrument enables different pointing (spa-
tial shifts or dithering), indexed by p, that can be shared
between channels. We also consider that the pointing posi-
tions (∆i,p,∆j,p) are multiples of the sampling steps of x:
(∆i,p,∆j,p) = (ipTi, jpTj), with (ip, jp) ∈ N2.
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Finally, the spatio-spectral field of view for a particular
pointing writes

xc,p[i, j, l] = xopt[i, j, l]×wc[i− ip, j − jp, l]. (3)

3) Spectral Blurring: The spatio-spectral cubes xc,p[i, j, l]
are projected onto 2D detectors, through diffraction gratings
for instance. For a monochromatic punctual source at the
wavelength λ = lTl from the channel c and the pointing p, we
consider the usual spectral response for grating spectrometers
writing [29]

hc,j,p(l
′, l) ∝ sinc2

(
πW

(
l′Tl′ − qj,p

lTl
− 1

))
. (4)

Here λ′ = l′Tl′ is the spatial position on the detector (in
wavelength units) with a sampling step Tl′ , and qj,p ∈
[−∆j,c/2,∆j,c/2] is the relative spatial position of the input
source determined by the spatial position j and the pointing
p. This spectral response is independent of the other spatial
position indexed by i. Moreover, as pointed by Eq. (5)
below, the proposed model is not limited to the spectral PSF
detailed in Eq. (4). Other models or responses inferred from
calibrations can also be considered.

Several particularities of the spectral response, or more
generally of the dispersion system, are inferred from Eq. (4).
First, as illustrated in Fig. 1, the spatial position on the
detector λ′ = l′Tl′ of the spectral response depends on the
wavelength input λ = lTl. Second, the spectral response is
not stationary and becomes broader with the increase of the
wavelength. Finally, the relative spatial position qj,p alters the
spatial position of the spectral response on the detector by
shifting its maximum position.

10 12 14 16 18 20 22
′ ( m)

= 10 m
= 15 m
= 20 m

Fig. 1. Grating outputs (from Eq. (4)) for three monochromatic point sources
at different wavelengths (λ = lTl). The position on the detector (λ′ = l′Tl′ )
depends on λ, while the width increases linearly with the wavelength.

Eq. (4) also depends on the parameter W . It defines the
width of the spectral response, which controls the spectral
resolution. Assuming that the instrument is calibrated with
a known spectral resolution R = λ/∆λ, with ∆λ the full
width at half maximum (FWHM), basic calculus leads to
W ≈ 2.8R/π. Finally, the grating is a non-stationary linear
system.

After discretization of the response, all individual sources
xc,p[i, j, l] contribute on the detector resulting in an output
gc,p of the dispersing system that writes

gc,p[i, j, l
′] =

∑
l∈Lc

xc,p[i, j, l]hc,j,p[l
′, l] , (5)

with l′ ∈ L′
c the wavelength index sampled on the detector

and hc,j,p[l
′, l] obtained from Eq. 4. The model in Eq. (5) is

not a convolution since the spectral response is not stationary.
Consequently, homogeneous spectral sampling is not required
and can vary across the channels c. The spectral resolution of
the output is fixed by the spectral response and depends on
the sampled wavelength l′.

4) Detector Integration: The 3D spatially and spectrally
blurred cube gc,p[i, j, l

′] depends on the spatial index j
whereas detectors are 2D. Since the system is linear, all
the contributions of sources within the spatial window Jc,p,
determined by the channel c and pointing p, are summed
on the detector. Consequently, without dithering and super-
resolution, the width of the window wc along the j-axis of
the measurements determines the spatial resolution along this
axis.

Moreover, the spatial sampling step Ti along the i-axis of
the object g is different and smaller than the sampling step
of the detector. Therefore, for all pointing p, we consider that
the spatial sampling step Ti′ of the detectors for each channel
c is a multiple dc ∈ N of Ti with Ti′ = dcTi, as in the
classical image Super-Resolution [10]. Consequently, the 2D
measurement yc,p for channel c and pointing p writes

yc,p[i
′, l′] =

(i′+1)dc−1∑
i=i′dc

∑
j∈Jc,p

gc,p[i, j, l
′] (6)

where i′ and l′ are the spatial and spectral indexes on the 2D
detector, respectively. In practice, the summation along the i-
axis is computed as a convolution between g and a square
impulse response of size dc, followed by subsampling every
dc elements.

To conclude, we have developed a non-stationary but linear
forward model involving relatively complex components that
writes

yc,p[i
′, l′] =

∑
i,j

∑
l∈Lc

(
x[i, j, l] ∗

i,j
h[i, j, l]

)
wc[i− ip, j − jp, l]× hc,j,p[l

′, l], (7)

and accounts for several effects:
• 2D spatial convolutions with spectrally varying PSF de-

scribed in Eq. (1) to model the optics,
• spatio-spectral windowing defined in Eq. (3) that models

different spatial pointing, and different spatio-spectral
selections,

• spectral blurring with a non-stationary response described
in Eq. (5),

• and spatial and spectral sampling with specific steps for
each detector which are larger than the sampling steps of
the 3D input, described in Eq. (6).

The next section presents the combination of this observation
model with a subspace representation of the 3D input image.

B. LMM forward model

1) Linear Mixing Model: Without additional information,
the reconstruction of x corresponds to the estimation of



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2022 4

each voxel x[i, j, l] from the set of measurements {yc,p}
for all channels c and all pointing p. However, the spectral
information contained in the 3D input images can be complex,
with spectral rays, non-monochromatic spectral features, and
continuum. Moreover, this spectral information is generally
highly correlated between spatial pixels over the whole mea-
sured spectral range. Therefore, dimension reduction methods
such as Principal Component Analysis (PCA) [18] or Non-
negative Matrix Factorization (NMF) [30] can be very efficient
on 3D images with a high spectral resolution, such as HS
images.

Here we propose to write the unknown 3D image x using
a Linear Mixing Model writing

x[i, j, l] =

M∑
m=1

am[i, j]× sm[l] (8)

where the spectral distribution at each spatial position (i, j) is
a linear combination of M spectral components sm, known
a priori or learned from the measurements, and unknown
proportions am. For our purposes, this is a subspace approx-
imation as the number of spectral components M is much
lower than the number of spectral bands L, as observed
with dimension reduction methods 1. For earth observation
with segmentation problems, the spectral components sm are
pure spectra called end-members, and the am coefficients are
called abundances [26]. In that case, additional constraints are
usually imposed on am such as the non-negativity and sum-
to-one constraints. This is not our case since we are only
interested in the subspace approximation to reconstruct the
original unknown 3D image x, and not in the physical meaning
of the spectral components sm.

The linear mixing model preserves the spatial and spectral
distributions of the 3D input image and has many advantages:

• The subspace approximation significantly reduces the
number of unknowns that we want to estimate.

• As a consequence it is expected to increase the Signal-
to-Noise (SNR) ratio on the reconstructed object.

• The reconstruction problem is limited to the estimation
of the mixing coefficients am, which requires only a
spatial regularization to enhance the spatial resolution of
the estimated 3D image.

• As the reconstruction of x is a linear combination of
the estimated am and the known sm, the final spectral
resolution of the reconstructed object is the spectral
resolution of the spectral components sm.

• The spectral information is fully given regardless of the
channel characteristics, while the spatio-spectral recon-
struction of x directly from the measurements, without
considering the mixing model, cannot exploit the com-
plete spectral information at all spatial positions since
the observation model (see Sec. II-A2) considers different
FOV depending on the channel.

• The estimated unknowns am depends solely on the
spatial information. Hence, all spectral related terms (that

1If M ≫ L, the reconstruction problem with an overcomplete dictionary
is considered, leading to variable selection methods, often done with sparsity,
outside the scope of this work.

depends on l and l′) can be precomputed.
2) Final Forward Model: By combining the linear mixing

model in Eq. (8) with the observation model in Eq. (7) we
obtain

yc,p[i
′, l′] =

∑
i,j

∑
l∈Lc

([
M∑

m=1

am[i, j]sm[l]

]
∗
i,j

h[i, j, l]

)
wc[i− ip, j − jp, l]× hc,j,p[l

′, l]. (9)

The above equation can be directly used to compute the
forward output. However, since we want to estimate the mixing
coefficients am and not the full 3D input image x, the known
spectral components sm can be included in the observation
model. Consequently, a new spectral dependent forward model
is formulated that directly links the mixing coefficients to the
measurements. For that purpose, all spectral operations related
to l and l′ can be combined and precomputed.

First a spatial PSF cube that depends on m is computed for
each spectral component with hm[i, j, l] = sm[l]h[i, j, l]. The
model then writes

yc,p[i
′, l′] =

∑
i,j

∑
l∈Lc

(
M∑

m=1

am[i, j] ∗
i,j

hm[i, j, l]

)
wc[i− ip, j − jp, l]× hc,j,p[l

′, l]. (10)

Second, the spectral blurring of sm introduced by the spectral
response hc,j,p in Eq. (4) can be precomputed with

hm,c,j,p[i, j, l
′] =

∑
l∈Lc

sm[l]h[i, j, l]wc[l]hc,j,p[l
′, l] (11)

where hm,c,j,p[i, j, l
′] is a spatio-spectral PSF cube that de-

pends on the spectral template number m, the spectral window
Lc, and relative position j within the spatial window Jc,p (as
described by Eq. (4)). Finally, the forward model writes

yc,p[i
′, l′] =

∑
i

∑
j∈Jc,p

wc[i− ip, j − jp](
M∑

m=1

am[i, j] ∗
i,j

hm,c,j,p[i, j, l
′]

)
. (12)

Compared to Eq. (9), the final forward model is relatively
simplified with the following steps:

• First, the 2D mixing coefficients am are convoluted by
a collection of 2D+λ PSF hm,c,j,p that depends on the
spectral component number m, the channel c, and the
relative spatial position within the channel (j, p).

• After summation on m, the cube is spatially windowed
for each pointing p.

• Then, the high-resolution window is spatially detector
integrated (subsampled), resulting in 2D measurements
yc,p with a low spatial resolution.

3) Matrix Formulation: The model in Eq. (12) is linear
and represents the overall multi-frame 2D measurements yc,p

in terms of the unknown mixing coefficients a

yc,p = Hc,pa = Σi,jWcΣmCm,c,j,pa (13)
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where C is a convolution operator, Σm a summation on the
spectral template number m, Wc a windowing or raw selection
and Σi,j a sum on i, j to model detector integration.

Consequently, the adjoint operator writes

ec,p = HT
c,pyc,p = CT

m,c,j,pΣ
T
mW T

c ΣT
i,jyc,p (14)

where ΣT is a duplication operator, W T
c a zero filling operator

and CT
m,c,j,p a convolution with flipped response.

The overall measurements writes

y = Ha = [HT
0,0, . . . ,H

T
C,P ]

Ta (15)

and the full-adjoint operator writes

e =
∑
c,p

HT
c,pyc,p = HTy (16)

which is the sum of all retro-propagated measurements.
The next section describes the proposed reconstruction

formalized as an inverse problem approach with efficient
Quadratic Majorize-Minimize algorithm [24], [31].

III. INVERSE PROBLEM

Our new forward model combines multiple observations
with a full complex linear model y = Ha. The operator H
takes into account (1) spectral-dependent spatial blurring, (2)
multiple channel observations with different fields of view, (3)
spectral blurring, and (4) heterogeneous spatial and spectral
samplings. Therefore, the mixing coefficient a reconstruction
is an ill-posed inverse problem that includes data fusion,
deconvolution, and multi-frame super-resolution steps.

A. Proposed reconstruction

We propose a new multi-frame SR algorithm that relies on
the complete forward model in Eq. (12), with a reconstruction
solution defined as the minimizer of an objective function
combining a data fidelity term and a regularization term R(a)
expressed as

â = argmin
a

(
∥y −Ha∥2Σ−1+R(a)

)
(17)

where Σ is the noise covariance matrix. We suppose here
that the noise is Gaussian but not necessarily identically
distributed or independent. However, the application of the
inverse covariance matrix must be feasible. This model can
approximate in some way Poisson noise with high photon
count with independent non-identically distributed Gaussian
noise. In that case, Σ−1 is diagonal with values that should
be derived from measurements. Many regularization methods
and algorithms have been proposed in the literature. For
instance, l2 regularization [25] is the seminal approach with
fast algorithms but fails to preserve the high gradient values
of the solution. The Total Variation (TV) regularization [12]
or dictionary-based approaches with sparsity constraints [32]
has been broadly used but can introduce cartoon-like effects
and provide relatively slow algorithms. More recently, prior
learning from data with machine learning approaches [33] has
been widely explored but requires many measurements to be
competitive.

In this work, the major degradation effects of the forward
model are the spectral-dependent spatial and spectral blurring.
However, by choosing a linear mixing model with known
spectral components s, our reconstruction algorithm does not
require spectral regularization. On the other hand, the spatial
blurring is significant, especially at long wavelengths. There-
fore, we propose a convex spatial regularization to preserve
strong spatial gradient in the image. The objective function,
denoted J(a), writes

J(a) = ∥y −Ha∥2Σ−1+µ
∑
c∈C

ϕ(vT
c a) (18)

where vc are first-order differences in the two spatial dimen-
sions, c ∈ C a clique index that is a linear combination of
pixels, µ is the spatial regularization parameter, and ϕ is a
strictly differentiable convex loss like the Huber loss, allowing
the use of fast optimization algorithms like [24], often faster
than those based on non-differentiable loss [34]. Moreover,
these algorithms are not restricted to convex loss.

B. Quadratic Majorization Minimization

The objective function J(a) is an instance of the more
general criterion [23], [35] with:

J(a) =
∑
q

µqΨq(Vqaq − ωq) (19)

where a is the unknown, Vq is a linear operator, ωq is a data
fixed vector, µq are scalar hyper-parameters, and Ψq(u) =∑

c ϕq(uc).
In addition, we suppose the following assumptions for the

scalar function ϕq [24]:
1) C1, even, coercive,
2) ϕq(

√
·) is concave on R+,

3) and 0 < ϕ̇q(u)/u < +∞, ∀u ∈ R.
This objective function structure is chosen to allow efficient
algorithms that use majorization with quadratic surrogate
functions Q which write [36]

Q
(
a,ak

)
= J

(
ak
)
+∇J

(
ak
)T (

a− ak
)
+

1

2

(
a− ak

)
A(k)

(
a− ak

)
(20)

where
A(k) =

∑
q

µqVT
q diag(bkq )Vq

and

bkq =
ϕ̇(Vqx

k − ωq)

Vqxk − ωq
. (21)

Lemma 3.1: [36] Let J be the objective function defined
in Eq. (19) and ak ∈ RN . If the assumption holds, then the
quadratic surrogate function Q in (20) is a tangent majorant
for J at ak, for all a ∈ RN ,{

Q(a,ak) ≥ J(a),

Q(ak,ak) = J(ak).
(22)

The proposed criterion in Eq. (18) is an instance of Eq. (19)
with q = {1, 2}, µ1 = 1, Ψ1(·) = ∥·∥2Σ−1 , ω1 = y, V1 = H ,
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V2 = V = [v1, . . . ,vC ]
T . In case of quadratic loss like Ψ1,

the curvature matrix A does not change, includes Σ, and
b variables equal 1. In previous work [37], we considered
the half quadratic (HQ) strategy proposed by Geman and
Reynolds (GR) [35] that use quadratic surrogate function on
all space RN . However, in our case, the computational cost
remains important since our forward model is complex and
works on high-dimensional input object and data. We therefore
choose to adopt recent and efficient algorithms based on
this Majorize-Minimize but for the step strategy applied on
subspace optimization [24], [38].

C. Subspace Optimization With Majorize-Minimize Step

Since the criterion in Eq. (18) is differentiable (and convex
if ϕ is convex), the optimization can be done with Non-Linear
Conjugate Gradient [39], or more efficiently with subspace
optimization methods that are known to be the most efficient
for this kind of criterion [40]. In the latter case, the iterative
algorithm writes

a(k+1) = a(k) + α(k)g(k) +

Z∑
z=1

β(k,z)d(k−z) (23)

where g(k) = ∇J(a(k)) is the gradient of J(a(k)) at the
iteration k, d(k−z) are the previous descent directions, and
α(k) and β(k,z) are scalars.

We particularly rely on the Majorize-Minimize Memory
Gradient (3MG) algorithm [24] that exploits the structure of
the criterion in Eq (18) to compute both the steps α and the
conjugacy parameter β(z) via the Majorize-Minimize strategy,
like in Sec. III-B. Therefore, Eq. (23) can be rewritten as

a(k+1) = a(k) +D(k)α(k) (24)

where D(k) is the subspace of dimension Z and α(k) a vector
of steps of size Z. Contrary to the traditional line search
strategy, finding the steps can be done with the Quadratic
Majorize-Minimize strategy in this subspace leading to an
explicit formula of α(k) with

α(k) = −U (k)−1
∇ J (k)

∣∣∣
α

(
a(k) +D(k)α(k)

)
(25)

with U (k) = D(k)tA(k)D(k) a Z × Z matrix. Eq. (25)
corresponds to the explicit solution of a quadratic loss that
majorizes the original criterion (Eq. (18)) in the subspace
generated by D(k). In our experiments, we choose Z = 2, that
is a subspace of size 2 where search direction consists of the
gradient and the previous search D(k−1)α(k−1). Note that this
strategy leads to an efficient algorithm that mainly needs the
computation of the gradient (therefore, one application of H
and HT per iteration, the heaviest part of the whole algorithm)
and the inversion of a Z×Z matrix. Moreover, this algorithm
has guaranteed convergence, and we refer to [24] for more
details.

IV. EXPERIMENTAL RESULTS

This section tests the proposed reconstruction algorithm on
two synthetic 3D spatio-spectral images with various spatial

and spectral distributions. The developed forward model is
general but primarily adapted for the Medium-Resolution
Spectrometer of the Mid-Infrared Instrument (MIRI/MRS)
onboard the James Webb Space Telescope (JWST), measuring
in the infrared spectral range, from 4.9 and 28.3µm [41].

We compare the proposed algorithm to the state-of-
art, which is the shift-and-add (S&A) reconstruction algo-
rithm [42], [8] followed by a TV regularization. First, the
S&A method shifts the overall measurements yc,p[i

′, l′] from
all channels c and pointing p in order to align them (after a pre-
processing step of the raw data). The results are then co-added,
resulting in a reconstructed hyperspectral image with enhanced
spatial resolution. This method corresponds to minimizing a
least square criterion with

J(x) = ∥y − Sx∥2 (26)

with yt = [yT
0,0, . . . ,y

T
C,P ] and St = [ST

0,0, . . . ,S
T
C,P ]. Sc,p

is a sampling and summation matrix that models detector
sampling but neglect blurring. The solution then writes

xS&A = (STS)−1
∑
c,p

ST
c,pyc,p (27)

where ST
c,p is an upsampling matrix, and (STS)−1 is a

diagonal normalization matrix that counts the number of times
a pixel is measured.

Since the S&A algorithm does not account for the blurring,
it is usually followed by a deconvolution step. In this work,
we chose a TV regularization for spatial deconvolution at each
wavelength l′, implemented with the primal-dual Chambolle-
Pock algorithm [43] writing

x̂l′

S&A = argmin
x

(
∥y −H l′xl′∥22+µ|∇xl′ |1

)
(28)

where H l′ is a spatial convolution operator for the wavelength
l′ and ∇xl′ is the first-order difference of the spatial image
for the same wavelength. This method does not allow data
fusion since the spatial information is treated separately for
every wavelength.

Finally, to highlight the importance of the edge-preserving
regularization choice (see section III-A), especially for 3D
input images with sharp edges, our algorithm is also compared
to the classic l2 regularization [25]

âq = argmin
a

(
∥y −Ha∥2Σ−1+µ∥V a∥2

)
(29)

solved via the conjugate-gradient optimization algorithm [44].

A. Setup of the experiment

We denote Obj1 the first 3D input image, representing a
synthetic object for which the results are easily interpretable.
Obj1 lives in a low-dimensional space, and expressed as a
linear combination of M = 3 known spectral components sm
computed from astrophysical measurements [45], weighted by
mixing coefficients am with sharp edges (see figure 3).

The second 3D input image, Obj2, represents an astro-
physical simulation of the photodissociation region located
in the “Orion bar” also with known abundances and spectral
components both available from [46]. It is made of M = 4
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complex spectral distributions, containing sharp spectral lines
and continuum emission, each weighted by their corresponding
mixing coefficient am, which presents structures in a wide
range of spatial scales (see figure 4).

Both input images are represented on a 3D Cartesian grid
with I × J = 120 × 120 pixels with a spatial sampling step
of Ti = Tj = 0.1 arcseconds. The spectral dimension for
both input images measures the infrared spectral range from
4.85µm to 28.5µm. Obj1 counts L = 3500 wavelengths
uniformly sampled with a step Tl = 6.7 10−3 µm, whereas,
Obj2 counts L = 3551 wavelengths non-uniformly sampled
with a step Tl varying from 2.4 10−3 to 1.4 10−2 µm.

The spectral dimension is divided by the HS instrument into
four distinct spectral channels, with different spectral ranges,
FOV, slit width, and numbers (see table I). The optical com-
ponent of the HS instrument is limited by the diffraction [6]
with a PSF assumed known. The analytic form of the PSF for
a monochromatic wavelength λ can be theoretically obtained
from the Fourier transform of the aperture function of the
telescope. The PSF width depends on the wavelength, and its
FWHM is ≃ λ/D (radians), with D referring to the diameter
of the telescope aperture. However, for the JWST, there is
no exact analytical description of the aperture function. Thus,
the PSF is numerically computed using the WebbPSF [27]
package, developed by the Space Telescope Science Institute
(STScI). Fig. 2 shows three monochromatic PSF at 5, 15,
and 25µm in logarithmic scales. It highlights the importance
of considering a wavelength-dependent PSF in our model,
especially since the FWHM of the PSF increases by a factor
of 5 between the shortest and longest wavelength.

To allow multi-frame measurements, the forward model
considers multiple observations of the same 3D input im-
age, with a dithering pattern of 8 pointing directions. For
a particular pointing, the light inside each spatio-spectral
selection xc is dispersed and projected onto 2D detectors
with different spectral resolution R, and different spatial and
spectral step sizes depending on the channel. The spatial step
size of the measurements Ti′ is fixed by the spatial sampling
of the detector. Given the large size of the MRS detectors,
we consider in this work that the spectral step size of the
measurements is Tl′ = 4 × TMRS

l′ and the spectral resolution
is R = RMRS/4, in order to reduce the computational cost
of the problem, where TMRS

l′ and RMRS are the spectral
sampling of the detector and the spectral resolution of the
actual MRS instrument, respectively, provided in [41]. The
values of Ti′ , Tl′ , and R, along with the dimension in pixels
of the measurements (I ′, L′) are given in Table I. Finally, the
simulated measurements yc,p are degraded with an additive
Gaussian noise with a standard deviation σn fixed to have a
Signal-to-Noise Ratio (SNR) equals to 30 dB for each channel

SNR = 10 log10
(
∥yc,p∥22/Ncpσ

2
n

)
(30)

where Nc,p is the size of yc,p. Hence, the additive Gaussian
noise is non-identically distributed over the totality of the
measurements y.

The algorithms are implemented in Python with the Numpy

library and Q-MM 2 toolbox [31] for Quadratic Majorization-
Minimization, with a single CPU at 5GHz with 32 GB of
memory.
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0.0

0.5

1.0

(a) λ = 5µm

1 0 1
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0.0

0.5

1.0

(b) λ = 15µm

1 0 1
arcsec

1.0

0.5

0.0

0.5

1.0

(c) λ = 25µm

Fig. 2. PSF at different wavelengths of JWST/MIRI (logarithmic scale)
simulated with the WebbPSF package [27].

Spectral components
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s3 [m]

Original mixing coefficients
 a1 a2  a3

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Fig. 3. Obj1: Spectral components [top], mixing coefficients [bottom].

B. Estimation results for âm

The estimation of the mixing coefficients âm depends on
the overall blurred, sampled, and noisy measurements y. We
used the same model for the simulation and the inversion of the
measurements to reconstruct the mixing coefficients for Obj1,
shown in Fig. 5 [top]. In contrast, we considered the following
errors in the model to reconstruct the mixing coefficients for
Obj2 shown in Fig. 5 [bottom]: (1) the wavelength-dependent
spatial PSF is spectrally shifted with an offset of +0.25µm
(the PSF used for the reconstruction are therefore wider than
the PSF used for the simulation), (2) the response of the grat-
ings (see Eq. 4 and Fig. 1) is approximated by a Gaussian PSF,
and (3) the Gaussian noise is non-identically distributed during
the simulation process whereas it is identically distributed
during the inversion. The red frames in Fig. 5 represent the
largest observed FOV, corresponding to the Channel 4 (see
Tab. I). We are interested in reconstructing âm inside this FOV
even if for the other channels (or wavelengths), no measure-
ments have been made. We test our reconstruction algorithm

2https://github.com/forieux/qmm/
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Ch. Spectral range
(µm)

FOV
(pixels)

Slit width
(arcsec) Slit number Ti′

(arcsec)
Tl′

(µm) I′ pixels L′ pixels R

1 4.9 – 7.7 34× 42 2× Tj 21 2× Ti 4 10−3 17 750 867
2 7.4 – 11.7 42× 51 3× Tj 17 2× Ti 6 10−3 21 750 760
3 11.5 – 18.1 57× 64 4× Tj 16 3× Ti 9 10−3 19 750 596
4 17.7 – 28.5 72× 72 5× Tj 12 3× Ti 1.6 10−2 24 750 410

TABLE I
CHARACTERISTICS SPECIFIC TO THE FOUR SPECTRAL CHANNELS OF THE IFS INSTRUMENT CONSIDERED IN THIS WORK.

Spectral components

5 10 15 20 25
[ m]

0.0
0.2
0.4
0.6
0.8
1.0 s1 [m]

s2 [m]
s3 [m]
s4 [m]

Original mixing coefficients
 a1 a2

3.0 4.5 6.0 7.5
×10 1

0 2 4 6 8
×10 1

 a3 a4

1.5 3.0 4.5 6.0
×10 1

2.4 3.2 4.0 4.8
×10 1

Fig. 4. Obj2: Spectral components [top], mixing coefficients [bottom].

with a sufficient number of iterations (see Table II) to ensure
convergence towards the solution âm. The reconstruction of
am for Obj2 is computationally more expensive than that for
Obj1, since Obj2 has one more spectral component.

Our proposed algorithm is based on minimizing the regular-
ized objective function in Eq. (18) with a convex regularization
function ϕ for edge-preserving. We particularly focus on the
Huber potential function [23] with

ϕ(δ, T ) =

{
δ2, if |δ|≤ T .

2T |δ|−T 2 otherwise, T ∈ R+.
(31)

The Huber function is continuously differentiable with a
quadratic form below a fixed threshold T to promote smooth-
ness to the solution and a linear form above T to preserve
the high gradient values. Consequently, two regularization
parameters µ and T must be tuned to ensure the best recon-

struction. Their values are reported in Table II. In practice, we
have minimized the normalized least square error between the
original am mixing coefficient and the estimated ones âm for
both objects with

Error(µ, T ) = ∥am − âm(µ, T )∥2/∥am∥2. (32)

The spatial distribution differs between am for Obj2, particu-
larly between am=2 which contains sharp edges and am̸=2

which are smoother. Therefore, we have used one set of
parameters (µ, T ) for m = 2, and another one for m ̸= 2
(see Table II).

The comparison between figures 3-4 and figure 5 shows
that the reconstructed mixing coefficients âm for both ob-
jects are unmixed and deconvoluted while preventing noise
amplification without excessive penalization of sharp edges.
The normalized least square errors are as small as 0.01% and
0.98%, for Obj1 and Obj2, respectively.

Iterations Runtime [s]
µ Tper iteration

Obj1 455 7.8 18 0.025

Obj2 633 10.6
0.005 (m ̸= 2) 1.5 (m ̸= 2)
0.0005 (m = 2) 0.001 (m = 2)

TABLE II
ITERATION NUMBERS AND HYPERPARAMETER VALUES Obj1 AND Obj2 .

C. Hyperspectral Reconstruction

This section compares the original and the reconstructed
3D images with the proposed and state-of-the-art algorithms.
The reconstructed HS images are obtained from the estimated
mixing coefficients âm using Eq. (8). In addition to the
l2 reconstruction, the proposed results are compared to the
“Shift and Add” algorithm (S&A) Eq. (27) followed by a TV
deconvolution using Eq. (28).

We first showcase in Fig. 6 the spectral distribution at the
center of the FOV of the original and the reconstructed images
computed with the S&A and the proposed algorithms. Qual-
itatively the spectral distribution of the reconstructed image
with the proposed algorithm matches the original spectral
distribution over the whole measured range. On the other
hand, the S&A algorithm fails to fully reconstruct the spectral
distribution, particularly the spectral lines in Obj2, which
appears broader and less intense than the original ones. Such
results are expected since the S&A algorithm does not consider
the spectral blurring initially introduced by the wavelength
dispersion system.
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Fig. 5. Estimated mixing coefficients âm for Obj1 [top], Obj2 [bottom].

Fig. 9 illustrates the spatial distribution of the reconstructed
3D image for Obj1 for three monochromatic images at
λ = 6.5, 14 and 21 µm, respectively, belonging to channels
1, 3, and 4. The loss of spatial information caused by the
detector integration is compensated in the multi-frame SR
reconstruction using the S&A algorithm. However, since this
method does not consider spectral variations of the PSF, the
reconstructed images are blurred, especially at long wave-
lengths. We proceed by applying a TV deconvolution for
each monochromatic image. This added step allows better
preservation of sharp edges and smaller errors but fails to
restore spatial details at a small scale since the regularization
is applied separately for each monochromatic image and does
not account for the correlations between spectral bands. On the
other hand, the proposed algorithm shows a good performance
with smaller error values for all monochromatic images. The
improvement of spatial resolution is striking, and the spatial
dynamic range appears fully reconstructed. Moreover, the
edges in the image are well preserved, whereas the l2 approach
introduces smoothing and ringing artifacts.

Fig. 10 shows the spatial distribution of the reconstructed
3D image for Obj2, for three monochromatic images at
λ = 6.5 µm which corresponds to continuum emission,
and at λ = 17 and 18.7 µm which corresponds to two
different spectral lines. As mentioned earlier, the reconstructed
spectral lines with the S&A algorithm are spectrally broadened

No model errors Model errors

PSNR 65 40
SSIM 0.99 0.99
SAM 4× 10−4 4× 10−3

TABLE III
THE PSNR, SSIM AND SAM FOR THE RECONSTRUCTED Obj1 USING THE

PROPOSED ALGORITHM, WITH AND WITHOUT ERRORS IN THE MODEL

because the spectral response is not considered. Hence, for a
fair comparison between the algorithms, we have spectrally
integrated the reconstructed HS image with the S&A algorithm
over the broad reconstructed spectral line, then we proceed
with the TV deconvolution for the integrated images. In
all cases, our proposed algorithm shows the best qualitative
reconstructions with the lowest errors for all monochromatic
images. The l2 approach gives good results with comparable
errors for the smooth images but fails to preserve the sharp
edges, particularly at λ = 18.7 µm as illustrated in Fig. 7.
Analogously to Obj1, the S&A and TV algorithms fail to fully
reconstruct small-scale spatial details.

Finally, we compare the proposed algorithm to the HS
reconstruction algorithm proposed in [37]. The latter directly
estimates the full 3D input from the measurements by perform-
ing a joint spatial and spectral reconstruction with a ℓ2–ℓ1 reg-
ularization on spatial and spectral difference (like vector-TV)
and hyperparameter set to optimize the recontruction error.
We validate the reconstruction on a third image Obj3

3 that has
more complex backgrounds such as small-scale spatial features
and discontinuities. Fig. 11 illustrates the spatial distribution
of the reconstructed 3D image for Obj3 at λ = 14µm.

The proposed algorithm restores the spatial dynamic with
an error of 2.48% while S&A has an error of 7.06% and [37]
with vector-TV prior has an error of 3.9%. Moreover, the
proposed LMM algorithm requires only the reconstructions of
âm. In contrast, the algorithm in [37] has to estimate the full
HSI x, yielding more errors especially at long wavelengths
since the blurring is more critical. More important, the spatial
hyperparameters may not be adapted at every wavelength,
like for the Obj2 case, and the introduction of additional
hyperparameters makes the tunning very difficult.

D. Quality Metrics

To better evaluate the spatial and spectral performances
of the reconstruction algorithms, we use three quantitative
measurements:

1) the Spectral Angular Mapper (SAM) [47] measuring the
spectral distortion, in radians, of the mth pixel

SAM(m) = arccos

(
< xm, x̂m >

∥xm∥2∥x̂i∥m

)
. (33)

where xm and x̂m are the spectral vector of the mth

spatial location (m ∈ [0, . . . , I] × [0, . . . , J ]) of the
original and reconstructed 3D images, respectively. The

3available here http://lesun.weebly.com/hyperspectral-data-set.html
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Fig. 6. Spectral distribution of the reconstructed HS image with the proposed
and S&A algorithms, at the central spatial position (60,60) for Obj1 [top],
Obj2 [middle: note that the three spectral distributions are shifted for clarity],
zoom on a spectral line for Obj2 [bottom].

Fig. 7. Zoom on sharp edges for Obj2 at 18.7µm: Original [left], proposed
[center], l2 approach [right].
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Fig. 8. Quality metrics for Obj1 (blue) and Obj2 (orange): Global SAM [top
left], global SSIM [top right], global PSNR [bottom]
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Fig. 9. Spatial reconstruction for Obj1 : Original images at 6.5, 14, and
21 µm [1st row], S&A [2nd row], TV restoration [3rd row], l2 approach [4th
row], proposed [5th row].

further the SAM value is from 0, the greater the spectral
distortion.

2) the peak signal-to-noise ratio (PSNR)

PSNR(l) = 10 log10

(
max(x)l

∥xl − x̂l∥2

)
. (34)

PSNR(l) denotes the PSNR of the spatial image at the
lth spectral band of x and x̂.

3) the Structural Similarity Index (SSIM) [48], computed
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Fig. 10. Spatial reconstruction for Obj2 : Original images at 6.5, 17, and
18.7 µm [1st row], S&A [2nd row], TV [3rd row], l2 approach [4th row],
proposed [5th row].

for each lth spectral band, whose value varies between
0 and 1. The higher the value, the better the similarity.

The global SAM is computed by averaging the whole image,
while the global PSNR and SSIM are computed by averaging
all spectral bands.

Table III compares the proposed reconstruction of Obj1
with and without model errors in terms of average SAM,
SSIM, and PSNR. We illustrate in Fig. 8 the average SAM,
SSIM, and PSNR for Obj1 and Obj2 while considering the
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Fig. 11. Spatial reconstruction for Obj3: Original image [left], spatial
spectral reconstruction with [37] [center], proposed [right].

errors in the model during the reconstruction process. The
proposed algorithm shows the best spectral reconstruction with
the lowest distortion for both objects. The spectral distortion is
very high for the S&A algorithm applied to Obj2, due to the
presence of sharp spectral lines which are hardly recovered
by this algorithm. Moreover, our algorithm shows the best
similarity index, especially for Obj1. Overall, the proposed
algorithm shows the best spatio-spectral reconstruction for
both scenes, with the highest average PSNR values.

V. CONCLUSION

We present in this work a new model for hyperspectral data
fusion based on low-rank approximation and a new efficient
Super-Resolution algorithm for hyperspectral reconstruction
based on a Quadratic Majorization-Minimization optimization
algorithm.

The first contribution is to develop an explicit forward
model based on IFS instruments. This model takes as input
a high spatio-spectral resolution image, approximated on a
low-rank subspace, and acquires a set of 2D measurements
projected onto different detectors with different characteristics.
The complex forward model takes into account (1) different
observations of the same scene with sub-pixel shifts, (2)
wavelength-dependent spatial and spectral PSFs, (3) different
spectral channels and IFUs, observing the input with different
spectral ranges and different numbers of slits of different sizes,
and finally (4) heterogeneous spatio-spectral samplings.

The second contribution is a fusion of the multi-frame
blurred and sampled 2D measurements, acquired from dif-
ferent spectral channels, in order to restore the single HSI
observed input. The algorithm is based on the regularized least
square approach with convex edge-preserving regularization,
and solved via the iterative Majorize-Minimize Memory Gra-
dient (3MG) [24] optimization algorithm, with freely provided
code 4.

Our method allows joint spectral unmixing with spatial
and spectral enhancements. The known spectral components
serve as a spectral regularization to our approach and prevent
spectral distortion, whereas the multi-frame observations and
the enforced spatial regularization allow restoring the original
spatial distribution without excessive penalization of high
gradient values.

Our work is validated with relative errors below 1% over
the whole reconstructed HS images for an SNR = 30 dB. Our

4http://github.com/forieux/qmm
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algorithm outperformed qualitatively and quantitatively the l2
approach, as well as the standard S&A and TV deconvolution
algorithms.

Several perspectives can be considered. First, non-convex
regularization or data-learned prior may be envisaged for better
resolution of the reconstruction. The spatial and spectral res-
olutions of the reconstructed 3D image can also be enhanced
by performing a fusion between the IFS measurements with
a high spectral but low spatial resolution, considered in this
work, and multispectral measurements with a high spatial but
low spectral resolution, observing the same scene. The fusion
problem can be solved in the inverse problem framework [1].
In addition, the spectral components of the LMM are, in many
applications, not provided a priori and must be extracted or
learned directly from the measurements along with the mixing
coefficients [49]. In a wider perspective, we would like to
estimate the hyperparameters jointly with the 3D input image
instead of being fixed by hand. The problem can be formulated
in the Bayesian framework where the solution is deduced from
a posteriori law for the unknown hyperparameters and the 3D
input image [50].
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We thank Jérôme Idier (LS2N – CNRS) and Saı̈d Moussaouı̈
(LS2N – École Centrale de Nantes) for fruitful discussions
about MM optimization, Olivier Berné (IRAP – CNRS) for
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