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ABSTRACT

We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter
estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the posterior density for all
unknown quantities, given the observations. This density is explored by a Markov chain Monte-Carlo sampling technique based on a
Gibbs loop and including a Metropolis-Hastings step. The numerical evaluation relies on the SPIRE instrument of the Herschel obser-
vatory. Using simulated and real observations, we show that the hyperparameters and instrument parameters are correctly estimated,
which opens up many perspectives for imaging in astrophysics.
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1. Unsupervised myopic inversion

The agreement of physical models and observations is a crucial
question in astrophysics, however, observation instruments in-
evitably have defects and limitations (limited pass-band, non-
zero response time, attenuation, error and uncertainty, etc.).
Their inversion by numerical processing must, as far as possi-
ble, be based on an instrument model that includes a description
of these defects and limitations. The difficulties of such inverse
problems, and notably their often ill-posedness, were well iden-
tified several decades ago in various communities: signal and im-
age processing and statistics, and also mathematical physics and
astrophysics. It seems pertinent to take advantage of the knowl-
edge amassed by these communities concerning both the analy-
sis of the problems and their solutions.

The ill-posedness comes from a deficit of available informa-
tion (and not only from a “simple numerical problem”), which
becomes all the more marked as resolution requirements in-
crease. The inversion methods must therefore take other infor-
mation into account to compensate for the deficits in the ob-
servations: this is known as regularization. Each reconstruction
method is thus specialised for a certain class of objects (point
sources, diffuse emission, superposition of the two, etc.) accord-
ing to the information accounted for. Consequently, in as much
as it relies on various sources of information, each method is
based on a trade-off, which usually requires the setting of hyper-
parameters, denoted by ξ in the following. The question of their
automatic tuning, namely unsupervised inversion, has been ex-
tensively studied and numerous attempts investigate statistical

approaches: approximated, pseudo or marginal likelihood, in
a Bayesian or non-Bayesian sense, EM, SEM and SAEM al-
gorithms, etc. The reader may consult papers such as (Zhou
et al. 1997; de Figueiredo & Leitao 1997; Saquib et al. 1998;
Descombes et al. 1999; Molina et al. 1999; Lanterman et al.
2000; Pascazio & Ferraiuolo 2003; Blanc et al. 2003; Chantas
et al. 2007; Giovannelli 2008; Babacan et al. 2010; Orieux et al.
2010a) and reference books such as (Winkler 2003, Part.VI),
(Li 2001, Chap. 7) or (Idier 2008, Chap. 8). Alternative meth-
ods are based on the L-curve (Hansen 1992; Wiegelmann &
Inhester 2003) or on generalised cross-validation (Golub et al.
1979; Fortier et al. 1993; Ocvirk et al. 2006).

The construction of maps of high resolution and accuracy
relies on increasingly complex instruments. So, inversion meth-
ods require instrument models that faithfully reflect the physi-
cal reality to distinguish, in the observations, between what is
caused by the instrument and what is due to the actual sky.
Then, a second set of parameters comes into play: the instru-
ment parameters, denoted by η in the following, such as lobe
width, amplitude of secondary lobes, response time, or gain.
Their values are of prime importance and their settings are gen-
erally based on dedicated observation and rely on models and/or
calibrations that inevitably contain errors. For example, the lobe
widths are usually determined from a specific observation in
a spectral band of non-zero width; consequently the result de-
pends on the source spectrum. Correction factors can be ap-
plied but, naturally, they also contain errors when the source
spectrum is poorly known or unknown. In contrast, our aim
is to achieve myopic inversion, i.e. to estimate the instrument
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parameters without dedicated observation. The question arises
in various fields: optical imaging (Pankajakshani et al. 2009),
interferometry (Thiébaut 2008), satellite observation (Jalobeanu
et al. 2002), magnetic resonance force microscopy (Dobigeon
et al. 2009), fluorescence microscopy (Zhang et al. 2007), de-
convolution (Orieux et al. 2010b), etc. A similar problem deals
with non-parametric intrument response (blind inversion), for
which the literature is also very abundant: (Mugnier et al. 2004;
Thiébaut & Conan 1995; Fusco et al. 1999; Conan et al. 1998)
in astronomy and (Lam & Goodman 2000; Likas & Galatsanos
2004; Molina et al. 2006; Bishop et al. 2008; Xu & Lam 2009) in
the signal-image literature represent examples. The present pa-
per is devoted to parameter estimation for the instrument model
developed in our previous paper (Orieux et al. 2012b), based on
an accurate instrument model.

A threefold problem has to be solved: from a unique obser-
vation, estimate the hyperparameters the instrument parameters
and the map. This is referred to as unsupervised and myopic in-
version. From the methodological point of view, the proposed in-
version method comes within a Bayesian approach (Idier 2008).
In this family, we find the classic Wiener and Kalman methods
that calculate the expectation or the maximizer of a posterior
density. In an equivalent way, the Phillips-Twomey-Tikhonov
methods calculate the minimizer of a least-squares criterion with
quadratic penalization. These methods are based on a second-
order analysis (Gaussian models, quadratic criteria) and lead
to linear processing. The work proposed here is in a similar
methodological vein as far as estimating the map goes; how-
ever, the contribution concerns the estimation of the hyperpa-
rameters and instrument parameters. We resort to an entirely
Bayesian approach (also called full-Bayes) that models the in-
formation for each variable (observations, unknown map as well
as hyperparameters and instrument parameters) through a prob-
ability density. Based on an a posteriori distribution for all the
unknown variables, the proposed method jointly estimates the
instrument parameters, the hyperparameters, and the map of in-
terest. Regarding experimental data processing, the present pa-
per follows (Orieux et al. 2012b) on inversion for the SPIRE
instrument onboard Herschel, which requires the hyperparam-
eters to be fixed by hand and the instrument parameters to be
known. The proposed method can automatically tune these pa-
rameters and may permit the systematic and automatic process-
ing of large information streams coming from present and future
space-based instruments (e.g. Herschel, Planck, JWST, etc.).

The paper is structured as follows. Section 2 introduces the
notation and sets out the problem. Section 3 presents the in-
version method: it introduces the prior densities and leads to
the posterior density. Section 4 describes the computing method
based on Markov chain Monte-Carlo (Gibbs) stochastic sam-
pling algorithms. The work is essentially evaluated on simulated
observations and on a first set of real observations in the context
of the SPIRE instrument onboard Herschel. The results are pre-
sented in Sect. 5. Finally, some conclusions and perspectives are
provided in Sect. 6.

2. Notation, instrument, and map models

To produce accurate and reliable maps, the inversion must ex-
ploit a description that represents the acquisition process as
faithfully as possible. In this sense, the instrument model

– is based on a map of the sky noted X, which is naturally
a function of continuous spatial variables (α, β) ∈ R2 (and
possibly a spectral variable λ ∈ R+);

– and accurately describes the formation of a set of N discrete
observations grouped together in a vector y ∈ RN .

A general description of the map of the sky as a function of
continuous spatial variables can be written starting from a ba-
sic function ψ by combination and regular shifting:

X(α, β) =
∑

i j

xi j ψ
(
α − i δα, β − j δβ

)
. (1)

The function ψ must be chosen so that this decomposition can
describe the maps of interest and is easy to handle. It may be,
among other choices, a pixel indicator, a cardinal sine function,
or a wavelet (although in the last case the function ψ and the
coefficients also depend on a scaling parameter). Whatever the
choice, the map of interest is finally represented by its coeffi-
cients xi j, the number of which is arbitrarily large and collected
in x ∈ RM in what follows. In practice, we choose the Gaussian
family as this greatly simplifies the (theoretical and numerical)
calculations of the model outputs, including for complex mod-
els (Orieux et al. 2012b; Rodet et al. 2008).

The presented work is quite generic in the sense that it is not
a priori attached to a specific instrument. It deals with a general
linear instrument model that describes, at least to a fair approx-
imation, the physics of the processes in play: optics, electrics,
and thermodynamics. It also includes the passage from a contin-
uous physical reality to a finite number of discrete observations.
The instrument is then described by

y = Aηx + n, (2)

i.e. a general linear model w.r.t. x (a special case of which is the
convolutive model). This model shows the instrument parame-
ters η ∈ RK that define the form of the instrument response. The
component n = y − Aηx represents the measuring and mod-
elling errors additively. For the SPIRE instrument (Griffin et al.
2010) of the Herschel Space Observatory (Pilbratt et al. 2010)
launched in May 2009, the paper of Orieux et al. (2012b) gives
the details of the instrument model construction. The results of
Sect. 5 are based on this instrument.

3. Probabilistic models and inversion

The proposed inversion is developed in the framework of
Bayesian statistics. It relies on the posterior density p(x, ξ, η|y)
for the unknown quantities x (image), ξ (hyperparameters),
and η (instrument parameters) given y (observations). This den-
sity brings together the information about the unknowns in the
sense that it attaches more or less confidence to each value of
the triplet (x, ξ, η). A summary of this density in the form of a
mean and a standard deviation will provide (1) a point estimate
(the posterior mean) for the map of interest and the parameters,
and (2) an indication of the associated uncertainty (the posterior
standard deviation).

Remark 1. In statistical terms (Robert 2005), the posterior mean
is an optimal estimator. More precisely, of all the possible es-
timators (whether Bayesian or not, empirical or not, a compu-
tation code, etc.), the posterior mean yields the minimum mean
square error (MMSE)1. Regarding first-order statistics, this esti-
mator has, moreover, a zero mean bias.
1 The mean square error is the expected value of the squared norm of
the difference between estimated value and true value. The expectation
is under the distribution of the observation and the unknown. The MSE
is the sum of the variance and the squared bias of the estimator (under
the distribution of the observation and the unknown).
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The posterior density is deduced as the ratio of the joint den-
sity for all considered quantities p(x, ξ, η,y) and the marginal
density for the observations p(y) by application of Bayes’ rule

p(x, ξ, η|y) =
p(x, ξ, η,y)

p(y)
· (3)

Seen as a function of the unknowns (x, ξ, η), this posterior den-
sity is proportional to the joint density:

p(x, ξ, η|y) ∝ p
(
x, ξ, η,y

)
. (4)

This joint density is essential as all the other densities (marginal,
conditional, prior, posterior, etc.) can be deduced from it. It can
be factorised in various forms and, in preparatio for the develop-
ments to follow, we write

p(x, ξ, η,y) = p
(
y|x, ξ, η

)
p
(
x, ξ, η

)
= p(y|x, ξ, η)p

(
x|ξ, η

)
p
(
ξ, η

)
= p(y|x, ξ, η)p (x|ξ) p(ξ)p(η), (5)

including the fact that (1) the hyperparameters ξ and the instru-
ment parameters η are a priori independent and (2) the object x
and the instrument parameters η are also a priori independent.

The different probability densities will be defined in the fol-
lowing sections according to the information available on each
set of variables and according to practical concerns about dealing
with the probability densities and numerical computation time.

3.1. Modelling of errors and likelihood

The factor p(y|x, ξ, η) in Eq. (5) is the density for the observa-
tions y given the map x, the instrument parameters η, and the
hyperparameters ξ, i.e. the likelihood of the unknowns attached
to the observations.

Given Eq. (2), the construction of this likelihood is based on
the model for the error n. The analysis developed in this paper
is essentially founded on its mean mn and its covariance ma-
trix Σn, and the proposed model is Gaussian:

n ∼ N(mn,Σn). (6)

The choice of the Gaussian model is also justified via informa-
tion property: based on the sole information of finite mean and
covariance, the Gaussian density is the model that introduces the
least information (Kass & Wasserman 1996). This property is
also mentioned as a maximum entropy property of the Gaussian
density.

mn is a scalar that models a possible non-zero mean for
the noise, such as an offset (in the proposed numerical evalu-
ation of Sect. 5, one offset for each bolometer is introduced).
Regarding the covariance matrix, to lighten the notation, we
set Σ−1

n = γnΠn: γn is a scale factor (called precision, homo-
geneous to an inverse variance) and Πn contains the structure
itself. For a stationary model Π−1

n has a Tœplitz structure, for
an auto-regressive modelΠn is a band matrix, for a independent
modelΠn is diagonal, for a white and stationary modelΠn = I ,
the identity matrix. In the developments below, the structure
of Πn is given while the scale factor γn and the mean mn are
unknown and included in the vector ξ. The results in Sect. 5 are
presented for the case Πn = I; hence γn is the inverse of the
noise power.

Remark 2. The proposed developments account for characteris-
tics of the error n that may differ from channel to channel, sensor
to sensor, etc. This will be the case in Sect. 5: a mean and power
of the noise will be assigned and estimated for each bolometer.

As the error n is Gaussian and additive (Eqs. (6) and (2)),
the vector of observations y, given x, ξ, η, is also Gaussian

y|x, ξ, η ∼ N
(
my|∗,Σy|∗

)
with mean

my|∗ = Aηx + mn (7)

and with the same covariance as n: Σy|∗ = Σn. So, the likelihood
of the unknowns attached to the observations reads

p(y|x, ξ, η) = (2π)−N/2γN/2
n det [Πn]1/2

× exp
[
−

1
2
γn

(
y −my|∗

)t
Πn

(
y −my|∗

)]
. (8)

It includes the information provided by the observations as the
transform of a map x by the instrument, taking its parameters η
and the noise parameters γn and mn into consideration.

3.2. Prior density for the map and spatial regularity

The aim of this section is to introduce a prior density p(x|ξ) for
the unknown map coefficients x based upon available informa-
tion about the map X. The present work is mainly devoted to
extended emissions. From a spatial standpoint, such maps are
relatively regular, i.e. they involve positive correlation. From the
spectral standpoint, the power is mainly located at relatively low
frequencies. The Gaussian density includes these second-order
properties in a simple way. This choice can also be justified
based on a maximum entropy principle. Its main interest here is
to result in a linear processing method. It is written in the form

p(x|γx) = (2π)−M/2γM/2
x det

[
Πx

]1/2 exp
[
−

1
2
γxxtΠxx

]
, (9)

where γx is a precision parameter (homogeneous to an inverse-
variance that controls the regularity strength) and Πx is a pre-
cision matrix (homogeneous to an inverse-covariance matrix
that controls the regularity structure). When the precision γx is
low (strong prior variance), the regularity information is weakly
taken into account. Conversely, when the precision γx is high
(weak prior variance), the penalization of non-regular maps is
high, i.e. the regularity is strongly imposed.

The subsequent developments are devoted to the design
of Πx to account for the desired regularity of the map. A simple
regularity measure Rc [X] of the map X is the energy of some
of its derivatives. These derivatives can address the spatial vari-
ables (α, β) separately, can rely on cross derivatives and can in-
tervene at various orders. This is the classical Philipps-Twomey-
Thikonov penalization idea (Tikhonov & Arsenin 1977). It can
also embed directional derivatives or any differential opera-
tor (Mallat 2008). In the simplest and natural case, we choose

Rc [X] =

∥∥∥∥∥∂X∂α
∥∥∥∥∥2

+

∥∥∥∥∥∂X∂β
∥∥∥∥∥2

,

where ‖u‖ is the standard function norm 2. Given the decompo-
sition (1), it is easy to establish the partial derivatives of X from
the derivatives of ψ. In the direction α, by noting ψ′α = ∂ψ/∂α,
we have∥∥∥∥∥∂X∂α

∥∥∥∥∥2

=
∑

i j i′ j′
xi j xi′ j′

∫
R2
ψ′α

(
α − i′ δα, β − j′ δβ

)
× ψ′α

(
α − i δα, β − j δβ

)
dα dβ,

2 The function squared norm is defined by ‖u‖2 =
!

u(α, β)2 dα dβ.
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which brings out the autocorrelation Ψα = ψ′α?ψ
′
α of the deriva-

tive of ψ. We then have a quadratic form in x∥∥∥∥∥∂X∂α
∥∥∥∥∥2

=
∑

i j i′ j′
xi j xi′ j′Ψα

[
(i′ − i) δα, ( j′ − j) δβ

]
= xtΨαx.

As the coefficients Ψα

[
(i′ − i) δα, ( j′ − j) δβ

]
depend only on the

difference between indices, the matrix Ψα has a Tœplitz struc-
ture and the computations amounts to a discrete convolution
that can be efficiently implemented by the use of fast Fourier
transform (FFT). Finally, by performing the same development
in the β dimension, a global quadratic norm appears: Rc [X] =
xt(Ψα +Ψβ)x and designs the precision matrix Πx = Ψα +Ψβ.
For more details and for a spectral interpretation, see Sect. 2.1
and Appendix A of (Orieux et al. 2012b).

3.3. Prior distribution for hyperparameters (hyperprior)

The hyperparameters are the unknown parameters of the densi-
ties for the error and for map Eqs. (8), (9) and they are collected
in the vector ξ = [mn, γn, γx]. It has been said that γx and γn

are the precisions (scale parameters) and mn is a mean (position
parameter) of Gaussian densities.

The choice of the prior distributions for these hyperparame-
ters is driven by two requirements: (i) little information is avail-
able a priori on their values and their relations and (ii) the cho-
sen distributions must lead to efficient algorithms (see Sect. 4.2).
Following this line of thought, we choose a prior distribution
determined by Jeffreys’ principle3: p(γ) = 1/γ for γx and γn

and p(mn) = 1. Moreover, regarding the triplet of hyperparam-
eters ξ = [mn, γx, γn], they are modelled as independent vari-
ables, since no information is available about their eventual re-
lations. Finally

p(mn, γx, γn) = 1/γxγn, (10)

has two advantages

1. First of all, the posterior conditional densities for γx and γn

(resp. for mn), as shown in Sect. 4.2, will be gamma densities
(resp. Gaussian density), which will make the implementa-
tion easier.

2. This prior distribution is non-informative (which introduces
a minimum of information on the value of the hyperparame-
ters) in the sense that it is invariant by certain parameteriza-
tion changes (Robert 2005; Kass & Wasserman 1996).

3.4. Prior density for the instrument parameters

The instrument parameter η operates in a complex nonlinear way
in the description of the observations. In consequence, what-
ever the prior density, the conditional posterior density for η
(see Sect. 4.3) will not have a standard form. The choice is thus
purely oriented by the information on the instruments and the
question that arises concerns the encoding of the available in-
formation in the form of a probability density. If we have no in-
formation except a minimum and a maximum value for a given
parameter, the choice of a uniform density over the interval is a
reasonable one. If we have a nominal value with an associated
uncertainty and no other information, the most suitable choice is

3 It yields a non-informative prior distribution based on a key feature
that it is invariant under reparameterization. It is deduced as the deter-
minant of the Fisher information matrix.

y

η

ρµ

mnΠnγnx

γxΠx

Fig. 1. Graphical dependency representation (hierarchical structure).
The round (square) nodes correspond to unknown (fixed) quantities.
The directions of the arrows indicate the dependencies.

a Gaussian density. The rest of the development is valid whatever
the choice, and we consider the Gaussian case in the following.

In addition, having no information available about possible
links among the various parameters, we take it that the parame-
ters are, a priori, independent and thus

p(η) =

K∏
k=1

(2πρk)−1/2 exp
[
−

(ηk − µk)2

2ρk

]
· (11)

In practice and for the first results presented in Sect. 5, the
means µk and variances ρk were taken from the SPIRE observer
manual or were fixed ad-hoc at plausible values.

3.5. Posterior density: histograms, mean and standard
deviation

The posterior density (3) for all the unknowns x, ξ, η, is deduced
from the joint density (5) for all quantities concerned as follows:

p(x, ξ, η|y) ∝ p(y|x, ξ, η)p(x|ξ)p(ξ)p(η).

In this expression,

– the density p(x|γx) for the unknown map x ∈ RM is
Gaussian (Eq. (9));

– the distribution p(ξ) (for ξ = [mn, γn, γx]) is a Jeffreys’ dis-
tribution (Eq. (10));

– the instrument parameters η ∈ RK is modelled by a Gaussian
density p(η) (Eq. (11));

– the density p(y|x, ξ, η) for the observations y ∈ RN given
the rest of the variables (i.e. likelihood) is a Gaussian den-
sity (Eq. (8)) and it is a function of x through my|∗ given
by Eq. (7).

Finally, from Eqs. (8), (9), (10), and (11), the posterior density
can be written

p(x, ξ, η|y) ∝ γM/2−1
x γN/2−1

n

K∏
k=1

(2πρk)−1

× exp
[
−

1
2

(ηk − µk)2

ρk

]
exp

[
−

1
2
γx xtΠxx

]
× exp

[
−

1
2
γn(y −my|∗)tΠn(y −my|∗)

]
. (12)

This density brings together all information about the unknowns,
and the estimators and algorithms presented below are entirely
based on it. However, it is too complex to be analyzed directly
as a whole and the difficulty stems from (i) the dimension of x
(of size M ∼ 105 in practice) and (ii) the joint presence of
other parameters (hyperparameters ξ and instrument parame-
ters η). Moreover, for the latter in particular, the dependence
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Table 1. Gibbs algorithm.

Initialize x(0), ξ(0), η(0)

for q = 1, 2, . . . do
(1) sample x(q) under p(x|ξ(q−1), η(q−1),y)
(2) sample ξ(q) under p(ξ|x(q), η(q−1),y)
(3) sample η(q) under p(η|x(q), ξ(q),y)

end for

is complicated and cannot be identified with a standard form.
The proposed approach is to explore the posterior density by
means of stochastic sampling (Robert & Casella 2004; Gilks
et al. 1996). The idea is to produce a set of samples x(q), ξ(q), η(q),
for q = 1, 2, . . . ,Q, drawn at random under the posterior density.
It is then possible, for example, to deduce histograms that ap-
proximate marginal densities, together with means and standard
deviations. This strategy is by no means new but interest in its
practical use has revived in recent years as new forms of algo-
rithms have been developed and computer power has increased.

Concerning the estimates themselves for the map, the hyper-
parameters and the instrument parameters, we choose the pos-
terior mean (PM), as indicated at the beginning of Sect. 3 (see
also Remark 1). We will also look at the dispersion around the
mean through the posterior standard deviation (PSD) and the
links among components through posterior correlations. Using
the set of samples x(q), ξ(q), η(q), for q = 1, 2, . . . ,Q, the posterior
mean µP and the posterior covariance matrix ΓP are computed by

µP ≈
1
Q

Q∑
q=1

x̄(q) (13)

ΓP ≈
1
Q

Q∑
q=1

(
x̄(q) − µP

) (
x̄(q) − µP

)t
, (14)

where x̄ denotes the column concatenation x̄ = [x; ξ; η].
Practically, it is not possible to compute the entire covariance ΓP,
but it is possible to compute its diagonal elements to characterize
the marginal errors for each component (each pixel, hyperparam-
eters, instrument parameters) and to compute a few nondiagonal
elements to measure the correlations between components.

4. Exploration of posterior density
and the computation algorithm

We have introduced an instrument model and various probabil-
ity densities to define the posterior density that brings together
the information on the map and the parameters (hyperparameters
and instrument parameters). We have also defined the posterior
mean (PM) as an estimate and the posterior standard deviation
(PSD) as a measure of the uncertainty. We have then introduced
the idea of computations via stochastic sampling. The develop-
ments in the present section concern the algorithm for computing
these samples.

The production of samples of the posterior density for the set
(x, ξ, η) is not possible directly because of the complexity of the
density. We therefore use a Gibbs algorithm (Robert & Casella
2004; Gilks et al. 1996), which breaks the problem down into
three simpler subproblems: sampling x, ξ, and η separately. This
is an iterative algorithm, described in Table 1: each variable x,
ξ, and η is drawn under its conditional posterior density given
the current value of the other two variables. For each of the three
steps, this conditional posterior density can be deduced directly
(up to a multiplying factor) from the posterior density (12): all

we have to do is to keep only the factors depending on the vari-
able of interest. This algorithm is a Markov chain Monte-Carlo
(MCMC) algorithm (Robert & Casella 2004; Gilks et al. 1996)
and is known to give (after a certain time, called the burn-in time)
samples under the posterior density.

The conditional density of the map coefficients x (Step (1),
Table 1) is Gaussian (Sect. 4.1). For the precisions ξ
(Step (2), Table 1), the conditional densities are gamma densities
(Sect. 4.2). They will be sampled using standard existing numer-
ical routines (e.g. in Matlab). In contrast, the conditional density
of the instrument parameters η (Step (3), Table 1) has a much
more complex nonstandard form, so that it cannot be directly
sampled by existing routines. To overcome this difficulty, sam-
pling was carried out by means of a Metropolis-Hastings step
(Sect. 4.3).

4.1. Map sampling

The density for the map x conditionally on the other variables is
deduced from (12) by extracting the factors depending on x:

p(x|y, γx, γn, η) ∝ exp
[
1
2
γxxtΠxx

+ γn(y −my|∗)tΠn(y −my|∗)
]
. (15)

Considering the expression for my|∗ given by Eq. (7), the argu-
ment of this exponential is quadratic in x. We deduce that we
have a Gaussian density and, by rearranging the argument, we
can determine the covariance and the mean

Σx|∗ =
(
γnAt

ηΠnAη + γxΠx

)−1
(16)

mx|∗ = γnΣx|∗A
t
ηΠny, (17)

Remark 3. For a fixed value of the hyperparameters and the in-
strument parameters, the map mx|∗ defined by Eqs. (16), (17) is
the maximizer (and the mean) of the conditional posterior den-
sity (15). This is the regularized least-squares solution denoted
x̂(µ) parameterized by µ = γx/γn. This corresponds to the so-
lution defined in our previous paper (Orieux et al. 2012b). For
a convolutive instrument model, it is the Wiener solution (also
called Wiener-Hunt solution; Orieux et al. 2010b).

Step (1) of Table 1 consists of sampling this Gaussian but
this operation is made very difficult by three elements: (i) the
large size of the map; (ii) the correlation introduced by the instru-
ment model and the prior density; and (iii) the absence of struc-
ture of the instrument model (invariance, sparse nature). This
problem can be solved using several approaches. For a convolu-
tive instrument model (2), it is possible to approximately diag-
onalise the correlation matrix by FFT, thus producing a sample
for the cost of an FFT (Chellappa & Chatterjee 1985; Chellappa
& Jain 1992; Geman & Yang 1995; Giovannelli 2008; Orieux
et al. 2010b). If where the inverse of the correlation matrix is
sparse, a partially parallel Gibbs sampler may be particularly
efficient (Winkler 2003, Chap. 8). In the present case, neither
the correlation nor its inverse possess the required properties.
A general solution relies on factorizing the correlation matrix
(Cholesky decomposition, diagonalization, etc.) but the large
size of the matrix (M × M with M ∼ 105) does not permit the
required calculations to be performed here.

The proposed solution consists of constructing a criterion
such that its minimizer is a sample under the desired posterior
conditional density. To do this, we perturb the means of the noise
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component and of the map component by an additive component
with covariance γxΠx and γnΠn. A perturbed regularized least
squares criterion is then introduced

J(x) = γn

(
ỹ −Aηx

)t
Πn

(
ỹ −Aηx

)
+ γx

(
x − m̃x

)t
Πx(x − m̃x),

and it can be shown (see Orieux et al. 2012a) that its minimizer

x̃ =
(
γnAt

ηΠnAη + γxΠx

)−1
×

(
γnAt

ηΠnỹ + γxΠxm̃x

)
(18)

is Gaussian and does indeed have the correlation and mean de-
fined by (16) and (17). This very powerful result has already
been used by (Féron 2006; Orieux et al. 2012b). In different
forms, similar ideas have been introduced and used by (Rue
2001; Rue & Held 2005; Lalanne et al. 2001; Tan et al. 2010).

Remark 4. For the non perturbed criterion (ỹ = y and m̃x = 0),
we have the regularized least-squares solution Eqs. (16), (17),
that was mentioned in Remark 3.

Remark 5. The approach described in Orieux et al. (2012a) in-
volves the sampling of the prior density (9) that is not properly
defined here: the matrix Πx does not penalise the mean of the
map (it is of deficient rank). But, for the same reason, the so-
lution (18) does not depend on the mean of the realization of
the prior density. Therefore, the simulated sample can have an
arbitrary mean value.

4.2. Hyperparameter sampling

To determine the posterior conditional density for γx, we exam-
ine the posterior density (12), and only keep the factors where γx

appears, which gives

p(γx|y,x, γn, η) ∝ γM/2−1
x exp

[
−
γx

2
||x||2Πx

]
,

and we recognize a Gamma density (see Appendix A)

γx ∼ G
(

M/2 , 2/||x||2Πx

)
. (19)

Concerning γn, we also refer to the posterior density (12) and
find

p(γn|y,x, γx, η) ∝ γN/2−1
n exp

[
−

1
2
γn||y −my|∗||

2
Πn

]
,

which is also a Gamma density

γn ∼ G
(

N/2 , 2/||y −my|∗||
2
Πn

)
. (20)

For both γx and γn the second parameter of the Gamma density
introduces a quadratic norm (regularity of the map in Eq. (19),
and goodness-of-fit in Eq. (21)), which can be easily computed.

Remark 6. An intuitive interpretation can be given to these re-
sults starting from the fact that the mean of the Gamma den-
sity is equal to the product of its parameters (see Appendix A),
here N/

∥∥∥y −my|∗

∥∥∥2
Πn

for (21). In this sense, the conditional
posterior mean is the inverse of the empirical variance of the
residuals. Consequently, when the goodness-of-fit term is small,
the mean of the density is large and so the sampled value of γn

is also high reporting a high precision, i.e. a weak variance (and
vice versa). The same holds for the map regularity in relation
with the mean of the density (19) given by M/ ‖x‖2Πx

. These ob-
servations support the coherence of the model and reinforce the
prior choice for these hyperparameters as a convenient one.

Table 2. Step of the Metropolis-Hastings sampler, which replaces
Step (3) of Table 1. The current sample at step q is η(q) and it is either
replaced or not by the proposed sample ηp.

(a) Draw a sample ηp under a proposal density.
(b) Compute the acceptation ratio ρ by Eq. (23).
(c) Replace η(q) by ηp (i.e. η(q+1) = ηp) with the probability min(1, ρ),
otherwise keep η(q) (i.e. η(q+1) = η(q)).

Regarding the mean of the noise, mn, it is a scalar whose
posterior conditional density is also deduced from the posterior
density (12) and from (7)

p(mn|y,x, γn, γx, η) ∝ exp
[
−

1
2
γn(mn − mr)2

]
,

where mr is the empirical mean of the residuals y − Aηx. We
then have a Gaussian density

mn ∼ N (mr, γn) . (21)

In the numerical evaluation of Sect. 5, one such mean is esti-
mated for each bolometer.

Remark 7. If we examine the relationships above, we see
that p(γx|y,x, γn, η) = p(γx|x), in other words, γx and
(y, γn, η) are independent conditionally on x. Similarly, we note
that p(γn|y,x, γx, η) = p(γn|y,x, η), which means that γn

and γx are independent conditionally on (y,x, η). In addition,
mn is independant of γx, given y,x, γn, η.

4.3. Instrument parameter sampling

The last step (Step (3) of Table 1) is more complex. As for the
other variables, the posterior conditional density can be deduced
from the posterior density (12) by keeping the factors that bring
in η. There are two of these: the likelihood and the prior density,
and we thus have

p(η|y,x, ξ) ∝
K∏

k=1

exp
[
−

1
2

(ηk − µk)2

ρk

]
× exp

[
−

1
2
γn(y −Aηx)tΠn(y −Aηx)

]
. (22)

However, this is not a usual density, notably because there is
no simple mathematical form to represent the dependence of the
observation w.r.t. η. Thus, Step (3) of Table 1 cannot be carried
out directly with standard sampling routines and we resort to a
Metropolis-Hastings step in a random-walk version (Robert &
Casella 2004; Gilks et al. 1996) described in Table 2. It can be
briefly explained as follows. Because it is impossible to draw
a sample directly under the conditional posterior density (22),
a sample is drawn under another density (namely the proposal
density), but is not systematically accepted. Acceptance or re-
jection is also random with a precisely defined probability (see
Eq. (23)) to ensure that, at convergence, we have samples under
the target density (Robert & Casella 2004; Gilks et al. 1996). The
algorithm is divided into three sub-steps summarized in Table 2
and detailed here.

(a) Draw a proposal ηp as a perturbation of the current value:
ηp = η(q) + ε, deduce the instrument matrix Aηp , and the
corresponding model output m

p
y = Aηpx(q) + mn.
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(b) Compute the acceptation ratio

ρ =
p(ηp|y,x, ξ)
p(η(q)|y,x, ξ)

, (23)

based on the conditionnal posterior law ratio that compares
the goodness-of-fit for the current parameter and the pro-
posed one.

(c) Accept or reject the proposal, at random, with probability
min(1, ρ). To do so, draw u uniformly in [0, 1] and take

η(q+1) =

{
ηp if u < min{1, ρ}
η(q) otherwise.

These three substeps are inserted instead of Step (3) of Table 1.
The algorithm can be explained as follows. Starting with a

current value η(q), the algorithm proposes a new value ηp and
compares the goodness-of-fit for the two values. When the pro-
posed value improves the fit, ρ > 1 and ηp is accepted. When
the proposed value degrades the fit, ηp can be accepted or re-
jected, with a probability that is higher or lower, depending on
how weak the degradation is.

Remark 8. There are other more complex (and potentially more
efficient) approaches for Metropolis-Hastings sampling. In par-
ticular, the proposal density can be adapted, e.g. directional ran-
dom walk (Vacar et al. 2011). They are not exploited here but
are considered in the development perspectives.

5. Numerical results

The previous sections presented the approach for building the
posterior density and for its exploration by stochastic sampling
using a Gibbs algorithm including a Metropolis-Hastings step.
The mean and standard deviation (SD) of the posterior den-
sity are numerically computed as empirical averages based on
simulated samples, from relations (13) and (14). The develop-
ments below show the practicability of the proposed method
(models, estimate and algorithm), and provide a first numerical
evaluation.

5.1. Evaluation methodology

The evaluation is based on the SPIRE instrument (Griffin et al.
2010) of the Herschel Space Observatory (Pilbratt et al. 2010)
launched in May 2009. It focuses on the PMW channel (centred
around 350 µm) and the Large Map protocol in the nominal oper-
ating conditions: scan back and forth with constant speed (30′′/s)
over two almost perpendicular directions (88◦). The scans are as-
sociated with a high sampling frequency (Fs ≈ 30 Hz) providing
spatially redundant observation and Fig. 2 shows the correspond-
ing redundancy/pointing map. The spatial shift between basis
functions (see Eq. (1)) is fixed at δα = δβ = 2′′, based on our ear-
lier work (Orieux et al. 2009, 2012b), to obtain the best gain in
resolution without important increase of the computational cost.
The angular size of the reconstructed map is 20′×20′, i.e. a map
of 600 × 600 coefficients. The associated direct model, includ-
ing the whole acquisition chain (scanning strategy, mirror, horns,
wavelength filters, bolometers, and electronics) is detailed in our
previous paper (Orieux et al. 2012b) and represented by Eq. (2)
of the present paper.

The unsupervised method is assessed based on two synthetic
maps of extended emission (the Galactic Cirrus (Fig. 3e) and
a realization of the prior density Eq. (9)) as well as based on a
real observation (reflection nebula NGC 7023, Fig. 7). The paper
also proposes a first assessment of the unsupervised and myopic
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Fig. 2. Redundancy/pointing map associated with our experiment of five
crossed scans.

approach based on a synthetic map with broader spectral content
(the Galactic Cirrus with point sources (Fig. 3e)).

In the simulated cases, a zero-mean white Gaussian noise
is added to the model output. Moreover, in these cases, since
the original map (the “sky truth” denoted by x∗) is known, the
quality of the reconstruction (denoted by x̂) can be quantified
through an error:

E =
∑
i, j

|x∗i j − x̂i j|
2
/∑

i, j

|x∗i j|
2, (24)

where only coefficients in the observed area are taken into ac-
count, allowing assessments and comparisons between methods.

5.2. Algorithm behaviour and general comments

As explained in Sect. 4, the algorithm provides a series of sam-
ples that form a Markov chain for hyperparameters, instrument
parameter and map. The MCMC theory then ensures that it cor-
rectly explores the parameter space and produces a density of
samples reflecting the posterior density. Practically, the algo-
rithm has been executed for the unsupervised problem as well
as for the unsupervised and myopic problem. It has been run
several times (1) using identical initial conditions and (2) using
different initial conditions. In both cases, the same qualitative
and quantitative behaviour as presented here has been systemat-
ically observed.

The computation time takes about one hour for the unsuper-
vised (nonmyopic) case and about ten hours for the unsupervised
and myopic case. The main computational cost is due to compu-
tating the instrument model output given by Eq. (2).

Figures 6–8 present some typical elements of the algo-
rithm operation: visualization of progression, convergence phase
(burn-in period), stable phase, etc. The evolution of the chain is
shown for hyperparameters (Figs. 6 and 7) and for instrument
parameter (Fig. 8). It is thus possible to grasp how the parameter
space is explored.

5.3. Unsupervised approach

5.3.1. Assessment of map estimation

The qualitative and quantitative assessment of the reconstructed
maps is presented here for the Galactic Cirrus; the first results
are shown in Fig. 3.

– The unsupervised method (proposed method) is outlined in
Fig. 3a. The hyperparameters are automatically set (without
knowing of the sky truth).
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(a) Proposed map (b) Best map
0 100 200 300

5

6

7

8
x 10

−5

 

 
Proposed

Best
True

(c) Profile

(d) Naive map (e) True map

10
−2

10
−1

10
−15

10
−10

f [1/arcsec]

 

 

True

Proposed

Best

Naive

(f) Spectral density

Fig. 3. Comparison of reconstructed map for the Galactic Cirrus: proposed map (Fig. 3a), best map (Fig. 3b), naive map (Fig. 3d), and true map
(Fig. 3e). Figure 3c shows a profile (marked by the white line in Fig. 3e) and Fig. 3f the spectrum (circular means of power spectra). Uncertainties
are given in Fig. 4 and quantitative results are given in Table 3. Comments are given in Sect. 5.3.1.

– The best-supervised method is outlined in Fig. 3b. The hy-
perparameters are set by hand to minimize the error E (know-
ing the sky truth). It is referred to as the best map and was
previously presented in our paper (Orieux et al. 2012b).

– The naive map (coaddition) and the true map are shown in
Figs. 3d and e.

– In addition, Fig. 3c gives spatial profiles (vertical in the mid-
dle of the map) and Fig. 3f gives the spectral4 profiles.

As expected and shown in (Orieux et al. 2012b), the inversion
based on an accurate instrument model considerably improves
the quality of the map: see the proposed map and the best map
compared to the naive map and to the true map. The proposed
map is visually very similar to the true map. In particular, our
method restores details of small spatial scales (with spectral ex-
tension from null to high frequency) that are invisible on the
naive map but are present on the true map (see Fig. 3c). In addi-
tion, our method correctly restores the structures of large spatial
scales (low frequencies) and also the mean level of the map (null
frequency), i.e. the photometry.

To assess the pertinence of estimating γn and γx in terms
of map quality, we compared the proposed map with the best
map. They are visually very similar (see Figs. 3a and b). In the
quantitative terms given by Table 3, the best map produces an
4 This spectrum is computed from the FFT-2D of the map by aver-
aging the coefficients in regularly spaced concentric rings. This gives a
1D spectrum containing the isotropic approximation of the spectral map
properties.

Table 3. Comparison of reconstruction error E (see Eq. (24)) for the
Galactic Cirrus (the error E only accounts for the observed area of the
map).

Reconstruction error E
Unsupervised (γ̂x) 0.016%
Best supervised (γbest

x ) 0.0129%
Naive map 0.0435%

Notes. The proposed approach (which does not require knowing the
true map) produces an error only very slightly higher than the best map
(which does require knowing true map).

error E of 0.0129% and the proposed map produces an error E
of 0.016%, which is only slightly higher. In other words, the
proposed unsupervised method automatically (without knowing
the sky truth) determines hyperparameters that produce a map
almost as good as the best map (which requires knowing the sky
truth).

However, the proposed map shows a fine grainy texture that
is visible neither in the true nor in the best map. This feature
is also visible on the residual map of the coefficiens (Fig. 5).
This is also observable in Fig. 3f: the spectrum of the proposed
map passes above the spectrum of the true map in the spec-
tral band 0.025–0.035 arsec−1. This defect is related to a slight
overevaluation of the observation contribution with respect to the
prior contribution. It is referred to as under-regularization and
yields an overamplification of the observation in this spectral
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Fig. 4. PSD and quantification of uncertainties. Fig. 4a shows the map of the PSD and Figs. 4b and c show the interval around the estimated map
±PSD and the true map. In the spatial domain, Fig. 4b is a profile (marked by the white line on 3e) and in the spectral domain Fig. 4c is the circular
means of the power spectra.
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(a) Proposed map residuals
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(c) Naive map residuals

Fig. 5. Residuals of maps in the central part of measured coefficiens. This illustrates the grainy structure of the proposed map wrt. best map. The
naive map residuals suffer twice more errors and a squared feature caused by the pixel model.

band. This confirms the behaviour previously observed in de-
convolution (Orieux et al. 2010b; Giovannelli 2008) or noted for
the maximum likelihood (Fortier et al. 1993). Nevertheless, it is
remarkable that this defect is correctly notified by the PSD, as
explained in the next paragraph.

Indeed, the approach naturally provides a measure of relia-
bility through the PSD shown in Fig. 4. Two zones can be seen
in Fig. 4a, in accordance with Fig. 2: the central zone (where
observations are available) and the peripheral zone (extrapolated
from observations of the central zone and based on the prior reg-
ularity). The boundary between the two zones also exhibits the
variation of the observation hit and scanning strategy notably
well. In addition, the posterior standard deviation also illustrates
the difference between the zones observed with our without cross
scan. From a spatial standpoint, Fig. 4b shows an interval around
the estimated map with plus/minus PSD. The main result is that
the true map is clearly within the interval. In a similar way, from
a spectral standpoint the results are given by Fig. 4c (in rela-
tion with Fig. 3f): the true spectrum is also within the interval.
More specifically, incorrectly reconstructed in the spectral band
(above 0.025 arcsec−1), the stronger PSD clearly shows that the
estimated spectrum is certainly submitted to unsatisfactory er-
rors or confidence.

5.3.2. Assessment of hyperparameter estimation

This section assesses the unsupervised capabilities through
evaluating the hyperparameter estimation using the Galactic
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(b) γx chain

Fig. 6. Chains and histograms for γn, Fig. 6a, and γx, Fig. 6b, for the
Galactic Cirrus. The chains show the burn-in period (about 1000 itera-
tions) and the steady state. The corresponding histograms are computed
on steady state only.

Cirrus and a realization of the prior for the map (which
makes a true value γ∗x available). Fig. 6 shows the chains and
the histograms that approximate the marginal posterior densi-
ties p(γn|y) and p(γx|y). In both cases, the histogram is rel-
atively narrow although the prior is a wide non-informative
Jeffreys’ distribution (see Eq. (10)). In other words, the observa-
tions are sufficiently informative to quantify noise and regularity
level and the method is able to capture this information.

From a quantitative standpoint, results are given in Table 4.
For the Galactic Cirrus and prior realization, the estimated val-
ues γ̂n are very similar to the true value γ∗n (error is less
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Table 4. Hyperparameter estimation: true values, estimates, PSD and best values.

γ∗n γ̂n PSD γ∗x γ̂x PSD γbest
x

Cirrus 106 1.009 × 106 4.07 × 103 – 8.99 × 1011 2.46 × 1010 2.47 × 1012

Prior 106 1.003 × 106 4.05 × 103 4 × 1011 3.28 × 1011 1.07 × 1010 8.37 × 1011
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Fig. 7. Results for real observation processing (reflection nebula NGC 7023). Chains for the noise parameter (γn) and for the image parameter (γx)
in Figs. 7a and b. The stationary state is attained after a burn-in time of about 500 iterations. Figure 7c shows the corresponding map. Figures 7d
and e illustrate chains and marginal histogram for two bolometer offsets.

than 1%). Moreover, the PSD are very low (0.40%). In the case
of prior realization, the estimated value γ̂x is in the correct range
but the error is larger (about 17%) and the PSD is 1.7%. This dif-
ference can be naturally explained by two elements: (i) the noise
is added at the system output, so it is directly observed, whereas
the map is at the system input, i.e. indirectly observed; (ii) the
added noise is a realization of the prior density for the noise
while the Galactic Cirrus is not a realization of the prior density
for the map.

5.3.3. Real observation processing

This section proposes a first assessment for a real observation. It
is based on the reflection nebula NGC 7023 acquired during the
science demonstration phase of Herschel, which as been pre-
sented in (Abergel et al. 2010) and was processed in our previ-
ous paper (Orieux et al. 2012b). There and here, computations
are made on the level-1 files processed using HIPE. In our pre-
vious paper (Orieux et al. 2012b), the offsets were removed in a

pre-processing step and the regularization parameter was tuned
by hand compromise between gain in resolution and overampli-
fication of the observations. In contrast, here both are automati-
cally tuned.

Figure 7 presents the evolution of the chains for the hyperpa-
rameters: Fig. 7a for the noise parameter γn and Fig. 7b for the
image parameter γx. It is important to notice that the algorithm
behaves in a very similar manner for the real observation and for
the simulated observation (see Fig. 7 compared to Fig. 6). The
figures also give an empirical indication of the algorithm oper-
ation: after a burn-in time (empirically less than about 500 iter-
ations) the stationary state is attained and the chain remains in
a steady state: the samples are drawn under the posterior den-
sity. Concerning the offsets, the chains begin in the steady state,
thanks to a good initialization based on (Orieux et al. 2012b) re-
sults. All bolometer offsets behave in the same manner with two
example illustrated Figs. 7d and e. The empircal mean of the
offsets sample start to stabilize at approximately 500 samples.

Figure 7c shows the corresponding reconstructed map. Its
quality is equivalent to the quality of the map restored by
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Table 5. Quantitative evaluation of the estimation of the instrument parameter using the Galactic Cirrus with point sources.

Case η∗ η̂ η̂ − η∗ (η̂ − η∗)/η∗ σ̄

1 2.46 × 104 2.29 × 104 −1.65 × 103 6.7% 2.2 × 102

2 3.46 × 104 3.27 × 104 −1.86 × 103 5.4% 2.9 × 102

Notes. Prior mean and standard deviation are µ = 2.96 × 104 and ρ = 104.
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Fig. 8. Instrument parameter chain (myopic and unsupervised ap-
proach) for the of Galactic Cirrus with point sources. Left (right) part
of the figure deals with case 1, i.e. η∗1 = 2.46 × 104 (case 2, i.e.
η∗2 = 3.46 × 104). The horizontal axis gives the iteration index and the
vertical range is the prior interval in a two-standard-deviations sense.
The true value is shown by the straight line.

empirically tuning the hyperparameter presented in Orieux et al.
(2012b), Fig. 8. In other words, the proposed unsupervised
method automatically determines hyperparameters (noise power
and offsets as well as sky power) that produce a map almost as
good as the map produced by a hand-made hypermarameter tun-
ing. In addition, the map remains far better than the naive map
shown in Fig. 7f.

5.4. Myopic and unsupervised approach

The myopic and unsupervised question is a threefold problem
that is much more ambitious: estimate the instrument parame-
ter, the hyperparameters, and the map itself from a unique ob-
servation. In addition, the instrument parameter intervenes in a
complex way in the description of the observations, and more-
over, the problem is stated in a context that is doubly delicate:
ill-posedness and high-resolution.

In Orieux et al. (2012b), the equivalent PSF has a Gaussian
shape whose standard deviation is proportional to the wave-
length: σo(λ) = ηλ. It is then integrated w.r.t. the wavelength
(to include the spectral extend) and w.r.t. the time parameter (to
account for the bolometer response) to form the global instru-
ment response. To test the method, we consider the instrument
parameter η to be poorly known and introduce elements of the
feasibility to estimate it.

The prior is the Gaussian density given by Eq. (11),
with K = 1. Its mean is taken from the SPIRE observer man-
ual µ = 2.96 × 104 [′′/m] and its standard deviation is set to ρ =
104, i.e. a relatively large uncertainty. It is about 33% of the mean
and an equivalent prior interval is [0.96 × 104, 4.96 × 104] in
a two-standard-deviations sense. Two cases are investigated for
the true value (used to simulated observations): η∗1 = 2.46 × 104

and η∗2 = 3.46 × 104. The conditional posterior for η (Sect. 4.3)
does not have a standard form and its sampling (step (3) of
Table 1) relies on a Metropolis-Hastings sampler, itself based on
a random-walk with a Gaussian excursion. The size of the ex-
cursion was chosen so that the acceptation rate is around 50%.

Two maps are used for the observation: the Galactic Cirrus and
the Galactic Cirrus with point sources. In each case, the algo-
rithm was run several times from identical and different ini-
tializations, and shows similar qualitative and quantitative be-
haviours as those in Fig. 8.

Nevertheless, as expected, the spectral content of the
Galactic Cirrus is not sufficiently extended towards high fre-
quencies to provide an excitation that is adequate for instru-
ment identification. In contrast, the Galactic Cirrus with point
sources is more extended and estimations are more accurate.
Table 5 presents quantitative assessments. The main result is
that the estimation error is about 6%. It is a remarkable result
given the difficulty of the problem (triple problem, complex re-
lations, ill-possedness, and high resolution) and given that the
prior uncertainty is about 33%. In other words, the method is
able to capture information about instrument parameter, jointly
with noise level, regularity level, and map from a unique ob-
servation. However, the parameter η seems to be slightly under-
estimated which, we explain as follows. The input map (with
point sources) presents a broad spectral extent whereas the prior
favours spatially extended maps (dominated by relatively low
frequencies), so the posterior advocates a narrower PSF to com-
pensate for this spectral discrepancy.

Figures 9a and b show the related maps. They must be com-
pared to the map restored with the true instrument parameter
and the best hyperparameter presented in Fig. 7b of Orieux et al.
(2012b) and in Fig. 9d here. They must also be compared to the
true map and the naive map also given in Orieux et al. (2012b)
and in Figs. 9c–e here. As previously, the proposed maps show a
fine grainy texture but despite this defect, they remain similar to
the true map. The quality of the proposed maps is similar to the
quality of the map restored with the true instrument parameter
and the best hyperparameter. In addition, several point sources
of the true map are visible on the proposed maps but not on the
naive map. In other words, the proposed method automatically
determines instrument parameter and hyperparameters that pro-
duce a map almost as good as the best one and better than the
naive map.

6. Conclusion

We described regularized methods for image reconstruction and
focused on parameter estimation:

– hyperparameters, which guide the trade-off between prior-
based and observation-based information;

– instrument parameter, which tunes the physical characteris-
tics of the model of the acquisition system.

They were jointly estimated with the map of interest. We were
therefore dealing with an unsupervised and myopic inverse
problem.

The most delicate point is jointly handling the different types
of variables and their interactions in direct terms but, above all,
in inverse terms. From a methodology point of view, we worked
in the framework of hierarchical full Bayes strategies that model
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Fig. 9. Restoration of cirrus superimposed on point sources. The proposed maps must be compared to the maps restored with the true instrument
parameter and the best hyperparameter and with the naive map.

the available information for each set of variables (map, hy-
perparameters, instrument parameter, and observations) under
a probability density. We defined the posterior density, which
gathers the information on the map of interest and the parame-
ters, given the observations. We then defined the posterior mean
as an estimate of the map and the posterior standard deviation as
a measure of uncertainty, which gives an uncertainty map. This
approach makes it possible to work in a global and consistent
framework to solve the problem as a whole. It draws its inspi-
ration from our earlier works on deconvolution (Orieux et al.
2010b) and adapts them to the case at hand.

The posterior density was explored by stochastic sampling
using a Gibbs algorithm. The sampling of the map was difficult:
we are dealing with a large-sized multivariate normal density for
which classical techniques do not apply. We overcame this diffi-
culty by constructing a sample as the minimizer of a well-chosen
perturbated criterion (Orieux et al. 2012a). Another problematic
point is the instrument parameter sampling: we are dealing with
a very complex, nonstandard density. This difficulty was over-
come by means of a Metropolis-Hastings step. The estimate of
the map as well as the parameters (posterior mean) and the un-
certainties (posterior standard deviation) were calculated numer-
ically as empirical averages based on the simulated samples.

We presented a first application of the developments
(Bayesian estimation method and stochastic sampling algo-
rithm) in a real context: the SPIRE instrument of the Herschel
Space Observatory. The study was essentially performed on sim-
ulated observations and has also yielded some initial results on
real observations. We concluded that the approach is applicable

and enables joint estimation of the map, the hyperparameters,
and the instrument parameter from a unique observation. We
showed, among other results, that the quality of the proposed
map is similar to that obtained when the instrument parameter
is known and the hyperparameters are fixed by hand in a super-
vised way (using the sky truth). The method shows remarkable
results given the difficulty of the problem. It seems to us that
these initial results are particularly promising and worth devel-
oping. They may open up many new perspectives for imaging in
astrophysics in a myopic and unsupervised framework.

Appendix A: Gamma probability density

The gamma pdf for γ > 0, with given parameters a > 0
and b > 0, is written

G(γ|a, b) =
1

baΓ(a)
γa−1 exp (−γ/b) . (A.1)

The following properties hold: mean is EG[γ] = ab, variance
is VG[γ] = ab2 and maximizer is b(a − 1) if and only if a > 1.
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