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ABSTRACT

Multispectral and hyperspectral data fusion allows the restora-
tion of data with increased spatial and spectral resolutions. A
common approach is to solve an ill-posed inverse problem by
minimizing a regularized least squares criterion. This mini-
mization usually requires an iterative gradient-based method,
but this paper demonstrates the existence of an explicit solu-
tion. Direct models of the imager and the spectrometer are
described, the explicit solution is developed, and an applica-
tion on simulated data from the James Webb Space Telescope
is presented. A potential time saving of a factor of 1 000 is
highlighted by the proposed method.

Index Terms— inverse problems, hyperspectral, data fu-
sion, astronomical data, JWST

1. INTRODUCTION

Many fields such as remote sensing, astrophysics or Earth ob-
servation use hyperspectral data for spectra observation. Sev-
eral applications allow the use of integral field spectrographs
to acquire spectra in a given field of view, but the images pro-
duced are generally poorly sampled. Parallel acquisition of
high spatial resolution and well sampled data, such as mul-
tispectral data, opens the field of data fusion to reconstruct
highly spatially and spectrally resolved data [1].

Approaches for data fusion are often based on the solu-
tion of inverse problems with the minimization of a criterion
including a data adequacy term [2]. This method requires
both knowledge of the data formation process, called forward
model, and a model of the observed object.

In Wei et al. (2015) [3], the MS/HS data fusion problem
is formulated through a Sylvester equation, and an explicit
solution to this inverse problem is obtained, allowing a sig-
nificant reduction of the computational cost unlike iterative
approaches. However, this method is not applicable to the
reconstruction of astronomical data because it is developed
without spatial blur variability. Guilloteau et al. (2020) [4]
proposes the solution of an inverse problem adapted to astro-
nomical data with a spectrally non-stationary spatial blur by
minimizing a least squares criterion with quadratic regulariza-
tion. But unlike Wei et al., an iterative algorithm is then pro-

posed to approximate the solution. The approach proposed
here computes the exact solution in an explicit way without
requiring an iterative optimization algorithm.

The instrument models are presented in section 2, and the
problem and its explicit solution are presented in section 3.
Section 4 presents an application of our method on simulated
astronomical data acquired by instruments similar to MIRI
of the James Webb Space Telescope (JWST). The results are
presented in terms of reconstruction quality and time saving
compared to an iterative method.

2. MODELS DESCRIPTION

2.1. Observed object model

The observed sky region is described as a discrete hyper-
spectral cube x with two spatial coordinates i ∈ [1, I] and
j ∈ [1, J ], and a spectral coordinate l ∈ [1, L]. As proposed
in [5, 4, 6], spectral correlations are introduced within the ob-
served object x, such that the spectral content of any location
(i, j) is a linear combination of T known spectra st. The
observed object x thus writes as

x[i, j, l] =

T∑
t=1

at[i, j] st[l] (1)

where at[i, j] gives the abundance of the spectrum st at (i, j).
This assumption, known as the Linear Mixing Model, offers
several advantages: as the spectra st are defined for all com-
mon wavelengths covered by the instruments, they enable ef-
ficient joint processing of all available data. In addition, this
model reduces the number of unknowns describing the ob-
served object from I × J × L to I × J × T , with T ≪ L,
reducing the computational load. Equation 1 can be rewritten
in a matrix form as

x = Ta (2)

where T is the linear mixing matrix, written as

T =

s1[1]IP . . . sT [1]IP
...

...
s1[L]IP . . . sT [L]IP

 (3)



and IP is the identity matrix of size P × P , with P = I × J
the number of pixels in an image.

2.2. Imager model

This model takes into account several types of transforma-
tions on the observed object:

1. a spectrally varying spatial blur due to the instrument’s
impulse response hm,

2. the spectral response wm, dependent on mirrors and
imager filters characteristics and detector quantum effi-
ciency,

3. the spectral integration performed for each of the C im-
ager filters.

The data produced by the imager from the object x are C
images, produced with a spatial sampling step equal to that of
x. Therefore, the value of a pixel at position (i, j) in image
c ∈ [1, C] is written as

xc
m[i, j] =

∑
l

(x ∗
i,j

hm)[i, j, l] w
c
m[l] (4)

where ∗
i,j

is the spatial convolution operator. This equation

writes in a matrix form as

xm = WmCmx (5)

where Cm is a block diagonal matrix, whose diagonal con-
tains L circulant convolution matrices Cm,l operating the spa-
tial blur hm for each wavelength of x, and the matrix Wm op-
erates the spectral response and spectral integration. Integrat-
ing the Linear Mixing Model of equation 2 into this equation
leads to

xm = WmCmTa (6)

where M = WmCmT is the identified matrix form imager
model, made up of C × T blocks. Thus a block of M at the
row c and column t is expressed as

Mc,t =
∑
l

wc
m[l]st[l]Cm,l. (7)

2.3. Spectrometer model

The transformations induced by the spectrometer model con-
tain

1. a spectrally varying spatial blur due to the impulse re-
sponse hh of the instrument,

2. the spectral response wh, linked to the mirrors char-
acteristics, the diffraction grating and the detector re-
sponse,

3. integration and spatial sampling of the detector, which
can be insufficient and lead to spectral aliasing.

The data produced by the spectrometer from the object x
are then L images with a spatial sampling step di times greater
in height and dj times greater in width than the one used in
x, with di, dj ∈ N∗. Pixels are therefore located in a new
reference frame with coordinates (̄i, j̄), and their value writes
as

xh [̄i, j̄, l] =

(̄i+1)di∑
i=īdi

(j̄+1)dj∑
j=j̄dj

(x ∗
i,j

h)[i, j, l] wh[l] (8)

which, as for the imager model, possesses a matrix form with
the integrated linear mixing matrix T that writes

xh = SWhChTa (9)

where Ch has the same structure as Cm, i.e. with L matrices
Ch,l on its diagonal to operate the spatial blur hh, Wh oper-
ates the spectral response at L wavelengths, and S = IL ⊗S
is a matrix operating the integration and sampling of the de-
tector by a convolution operation with a kernel of size di×dj
filled with ”1”, and a selection of 1 pixel over di pixels in
height and dj pixels in width. The matrix form of the spec-
trometer model is identified as H = SWhChT , built with
L × T blocks, and the block at the row l and column t is
expressed as

Hl,t = wh[l]st[l]SCh,l. (10)

3. METHODOLOGY

This section proposes a formulation of the inverse problem to
be solved for the reconstruction of the observed object, and
then describes an explicit solution to the problem posed.

3.1. Formulation of the problem

The abundance maps â describing the observed object are de-
fined as the minimizer of a quadratic criterion J , as proposed
in Guilloteau et al. [4], composed of two data adequacy terms
and a regularization term as

â = argmin
a

{J (a)}

= argmin
a

{
µm∥ym−Ma∥22+µh∥yh−Ha∥22+µr∥Da∥22

}
(11)

where µm = 1
2σ2

m
, µh = 1

2σ2
h

, and σm and σh are the stan-
dard deviations of additive white gaussian noises assumed to
be present in the imager data ym and spectrometer data yh,
respectively. The regularization parameter µr ∈ R+ regulates
the influence of the spatial smoothness imposed to stabilize
the solution, and D = IT ⊗ D where D is a first order 2D



difference matrix. The minimization of J is performed by
solving ∇J = 0, giving

â = Q−1b (12)

with

Q = µmM
HM + µhH

HH + µrD
H
D , and (13)

b = µmM
Hym + µhH

Hyh , (14)

where ·H is the conjugate transpose operator. Therefore, the
minimizer â of the quadratic criterion J can be calculated
explicitly if the inversion of the hessian Q is possible without
being a computational burden. Its inversion is explained in
the next section.

3.2. Explicit solution

The three matrices MHM , HHH and D
H
D consist of T×

T blocks. An explicit expression for the block at the row t and
column t′ of each of these matrices is

(MHM)t,t′ =
∑
c

MH
c,tMc,t′ (15)

(HHH)t,t′ =
∑
l

wh[l]
2st[l]st′ [l]C

H
h,lS

HSCh,l (16)

(D
H
D)t,t′ = DHD (17)

with Mc,t described equation 7. Since the blocks of these ma-
trices are circulant, they are diagonalizable in Fourier space.
Indeed,

1. (MHM)t,t′ is written as products and weighted sums
between circulant convolution matrices Cm,l, so each
block is also circulant,

2. (HHH)t,t′ is also circulant, as CH
h,lS

HSCh,l writes
in the Fourier space

CH
h,lS

HSCh,l = FHΛH
l FSHSFHΛlF (18)

with F the Fourier matrix, and Λl the diagonal ma-
trix of the eigenvalues of Ch,l. However, since S cor-
responds to a spatial decimation and SH to a filling
of ”0”, SHS has as its diagonal a Dirac comb with a
”1” every didj coefficients. Thus FSHSFH is a cir-
culant convolution matrix, as presented in Wei et al.
(2015) [3], such that

FSHSFH =
1

didj
Jdidj ⊗ IP ′ (19)

with ⊗ standing for the Kronecker product, Jdidj is a
square matrix of size didj × didj and full of 1, and
P ′ = P

didj
is the number of pixels in an image after

applying S. Therefore, CH
h,lS

HSCh,l is a matrix of
diagonal blocks in Fourier space, and so are the blocks
of HHH .
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Fig. 1: MIRI PSF [7] (logarithmic scale).

3. DHD is also circulant by approximating D as a circu-
lant matrix.

Consequently, according to equation 13, the T ×T blocks
of Q are also diagonalizable in Fourier space. An expression
for Q is then

Q = F
H
BQF (20)

where BQ is a matrix of diagonal blocks, and F = IT ⊗ F .
Inverting BQ is possible by transforming this matrix into a
block-diagonal matrix ∆Q with a permutation matrix P , such
that

BQ = P∆QP . (21)

According to equations 20 and 21, the inversion of Q is cal-
culated as follows

Q−1 =
(
F

H
P∆QPF

)−1

(22)

= F
H
P T∆−1

Q P TF (23)

where ·T is the matrix transpose operator, and ∆−1
Q is com-

putable by inverting each of its blocks individually. The data
are then reconstructed explicitly with the equation 12, as pro-
posed in [5], thus avoiding the use of an iterative optimization
method [4].

4. EXPERIMENTAL RESULTS

One targeted application of this work concerns the fusion of
imaging and spectrometry data from the mid-infrared instru-
ment MIRI of the JWST. The instrument models described in
parts 2.2 and 2.3 have been adapted to the imager MIRIM [8]
and Medium Resolution Spectrometer (MRS) [9] of MIRI.

The impulse response h used here is simulated by webbpsf
[7], and figure 1 illustrates its spectral dependency. The im-
ager contains C = 9 filters and its spectral response is taken
into account with the real Photon Conversion Efficiency
(PCE) curves of MIRIM [10]. The spectrometer model con-
sidered here uses decimation factors di = dj = 4 (summing



20 40 60 80 100
SNRdB of observation data

10 1

100

101

102

Re
qu

ire
d 

tim
e 

(s
ec

on
ds

)

LCG : 10% of min(  )
LCG : 1% of min(  )
Proposition with precalculation
Proposition without precalculation

Fig. 2: Time required by the LCG algorithm to reach 10% and
1% of the minimum of the criterion min(J ) (equation 11),
compared with the time required by the proposed explicit so-
lution as a function of the SNRdB of the instrument data. Cal-
culations with i9-10885H processor, 2.40 GHz (x 16), RAM
64 GB.

the values of each 4×4 pixel region into 1), inducing spectral
aliasing of the received signal for wavelengths below 20 µm.
The MRS has 4 spectral channels with 3 sub-channels each,
leading to 12 different PCE curves [9]. However, the spec-
trometer considered here is simplified with a single channel
and a PCE curve produced by concatenating the PCE curves
of the MRS [10].

Imagery data ym and spectrometry data yh data have been
created by applying the imager and spectrometer models on a
set a of T = 5 spectral abundance maps [11, 12], associated
to their respective spectrum st [13], to describe the observed
object using the Linear Mixing Model of equation 1. These
maps were simulated from real observational data from the
Orion Bar, and contain 125 × 250 pixels. The spectra cover
the MIRI band (5 to 28 µm), and contain L = 300 values.
These observation data ym and yh were corrupted with an ad-
ditive white gaussian noise of standard deviations σm and σh,
respectively.

Figure 3 illustrates the quality of the spatial reconstruc-
tion of the observed object for two different noise cases: a
case of low noise where the signal to noise ratio SNRdB is 50
dB for both the imagery data ym and the spectrometry data yh
(see figure 3a), and a case of high noise where SNRdB = 20
dB for both sets of data (see figure 3b). Reconstruction errors
are evaluated using the Normalized Root Mean Square Error
(NRMSE) [14], given under each figure, where NRMSE =
∥x̂− x∥2 / ∥x∥2, where x is the original hyperspectral cube
describing the object, and x̂ is the estimated cube. The first
case demonstrates an effective deconvolution effect, as spatial
features are successfully deblurred compared to the instru-
ment data. The second case illustrates the algorithm resilience

to gaussian noise as most spatial features, which disappeared
in the instrument data, are recovered. Moreover, the aver-
age error between the spectra observed by the spectrometer
and the original spectra can exceed 30 mJy arcsec−2 for both
noise cases, whereas the average error with the reconstructed
spectra does not exceed 1 mJy arcsec−2.

Furthermore, tests were carried out to compare the itera-
tive approach [4] and the proposed explicit approach in terms
of the computation time required to solve the equation 11.
The two approaches were tested by choosing the value of µr
that minimizes the NRMSE with respect to the original data.
The iterative approach LCG (Linear Conjugate Gradient) re-
quires a computation time exponentially proportional to the
SNRdB of the data ym and yh, as shown figure 2. For a very
low noise case (SNRdB = 100 dB), more than 8 minutes are
needed with LCG to reach 1% of min(J ). Indeed, the less
noisy the data, i.e. the higher the SNRdB, the less spatial
regularization is required for optimal reconstruction, and the
more high frequencies need to be restored, requiring a greater
number of iterations. This problem is avoided with the pro-
posed explicit solution, as the time needed to reach min(J )
is constant: 1.34 seconds with precalculations (creation and
inversion of the hessian Q), but only 0.5 seconds without pre-
calculations (single calculation of â = Q−1b).

5. CONCLUSION

The imager and spectrometer models were described by
considering spectrally varying blurs, instrument spectral re-
sponses, imager spectral integrations, and spectrometer spa-
tial integrations and subsampling. The data fusion problem
was posed by formulating a least-squares quadratic criterion
to be minimized. The existence of an explicit solution has
been demonstrated.

The results showed not only improved spatial and spectral
resolutions, deconvolution and noise reduction, but also con-
siderable time savings compared to an iterative approach: a
factor of 1 000 for a low noise case (SNRdB = 100 dB) with-
out precalculations (factor greater than 300 when precalcu-
lations are taken into account), for the reconstruction of 5
abundance maps of size 125 × 250, and thus of a cube of
size 125× 250× 300 thanks to a linear mixing model.

Edge-preserving techniques, such as the use of semi-
quadratic or convex regularization, would improve the qual-
ity of the reconstructed cubes. Studies will be carried out to
verify the existence of an explicit solution for such methods.
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